Loading...
HomeMy WebLinkAboutAppendix G: Geotech ReportAppendix G: Design-Level Geotechnical Investigation      www.haleyaldrich.com  REPORT ON  DESIGN‐LEVEL GEOTECHNICAL INVESTIGATION  101 TERMINAL COURT  SOUTH SAN FRANCISCO, CALIFORNIA            by  Haley & Aldrich, Inc.  Walnut Creek, California        for   US Terminal Court Owner, LLC  Greenwood Village, Colorado                File No. 0204962‐000  May 2022       HALEY & ALDRICH, INC. 2033 N. Main Street Suite 309 Walnut Creek, CA 94596 925.949.1012  www.haleyaldrich.com    3 May 2022   File No. 0204962‐000      US Terminal Court Owner, LLC  5660 Greenwood Plaza Boulevard, Suite 10  Greenwood Village, Colorado 80111    Attention: Ms. Ianthe Schaub    Subject: Design‐Level Geotechnical Investigation    101 Terminal Court  South San Francisco, California    Ladies and Gentlemen:    Enclosed is our design‐level geotechnical investigation report for the proposed redevelopment project  located at 101 Terminal Court in South San Francisco, California (Site). The approximately 8‐acre Site is  currently occupied by three structures in the north and a parking lot. These structures are single‐story  garage and booth structures. The remainder of the Site is paved with asphalt concrete.    The proposed redevelopment project will include the construction of eight (8) new 6‐story buildings  with subsurface parking garages at several buildings. Buildings A1, A2, B2, and B4 will be located within  the 101 Terminal Court parcel; buildings B1, B3, B5, and B6 will be within the 131 Terminal Court parcel.  There are two phases planned for the new development. Phase I consists of Buildings A1, A2, and  related amenities; Phase II includes the remaining six buildings and amenities. The proposed Phase I  buildings (A1 and A2) will have a two story at‐grade parking garage. On the other hand, Phase II  buildings (B1 through B6) will have a total of 6‐story parking garages, including two levels of  underground parking garage. We assume the project will also include underground utilities, asphalt and  concrete pavements, stormwater management facilities, and landscaping. The project design drawings  have not been prepared.    Based on our analysis of the subsurface soil conditions, we conclude that the proposed project is  geotechnically feasible. We find that the primary geotechnical issues that should be addressed during  the design and construction of the planned project include the potential for seismic shaking at the Site, a  high groundwater table and the presence of soft compressible soil at the near surface. We conclude that  the proposed buildings are most economical when supported on deep foundations bearing on the dense  to very dense Colma Formation soils. Our recommendations regarding the deep foundations, site  grading, fill compaction, and other geotechnical aspects of this project are presented in this geotechnical  investigation report.    US Terminal Court Owner, LLC  3 May 2022   Page 2        We appreciate the opportunity to provide our services to you on this project. If you have any questions,  please call.    Sincerely yours,  HALEY & ALDRICH, INC.        Liang Chow, PE (MN)  Project Manager        Catherine H. Ellis, PE, GE (CA)  Senior Associate, Geotechnical Engineer    Enclosures    \\haleyaldrich.com\share\CF\Projects\0204962\Deliverables\Geotechnical_Info\Reports\101 Terminal Ct\2022‐0503_HAI_101 Terminal Ct_Geotech_F.rev.docx   Table of Contents  Page    i  List of Tables iii  List of Figures iv  List of Appendices iv  1. Introduction 1  1.1 PURPOSE AND SCOPE 1  2. Site Conditions and Proposed Construction 3  2.1 SITE HISTORY 3  2.2 PROPOSED CONSTRUCTION 3  3. Geology 5  3.1 REGIONAL GEOLOGY 5  3.2 REGIONAL SEISMICITY 5  4. Subsurface Explorations 7  4.1 BORINGS 7  4.2 CONE PENETRATION TESTS 8  4.3 FIELD EXPLORATION BY OTHERS 8  4.4 GEOTECHNICAL LABORATORY TESTING 8  5. Subsurface Soil and Groundwater Conditions 10  5.1 SUBSURFACE CONDITIONS 10  5.2 SHEAR WAVE VELOCITY CONDITIONS 10  5.3 GROUNDWATER CONDITIONS 10  6. Discussion and Conclusions 12  6.1 SEISMICITY AND SEISMIC HAZARDS 12  6.1.1 Site Seismicity 12  6.1.2 Soil Liquefaction 13  6.1.1 Lateral Spreading 15  6.1.1 Sand Boils 15  6.1.2 Cyclic Densification 15  6.1.3 Fault Rupture 15  6.1.1 Tsunami 16  6.2 EXPANSION POTENTIAL 16  6.3 WEAK SOIL DEPOSIT AND FOUNDATION SETTLEMENT 16  6.4 TEMPORARY SHORING OPTIONS 17  Table of Contents  Page    ii  6.5 CONSTRUCTION DEWATERING AND WATER LEVEL ASSUMPTIONS 17  7. Recommendations 18  7.1 EARTHWORKS 18  7.1.1 Site Preparation and Grading 18  7.1.2 Subgrade Preparation 18  7.1.3 Material for Fill 19  7.1.4 Re‐Use of On‐site Material 19  7.1.5 Imported, Non‐expansive Fill 20  7.1.6 Fill Placement and Compaction 20  7.1.7 Weak or Wet Subgrade Mitigation 21  7.1.8 Underground Utilities 21  7.2 DEEP FOUNDATIONS 22  7.2.1 Tubex Piles 23  7.2.2 Auger‐Cast Piles 24  7.2.3 Lateral Resistance 25  7.2.4 Pile Foundation Quality Control Testing 26  7.3 SLABS‐ON‐GRADE 27  7.3.1 Floor Slabs 27  7.3.2 Exterior Flatwork 28  7.4 SURFACE DRAINAGE 28  7.5 FLEXIBLE PAVEMENT DESIGN 28  7.6 RIGID PAVEMENT DESIGN 29  7.7 TEMPORARY EXCAVATION SHORING 30  7.7.1 General Considerations 30  7.7.2 Lateral Earth Pressures 30  7.7.3 Shoring Installation 32  7.7.4 Design and Construction of Tiebacks 32  7.8 RETAINING WALLS 37  7.9 CORROSION POTENTIAL 38  7.10 STORMWATER INFILTRATION 39  8. Supplemental Geotechnical Services 40  9. Limitations 41  References 42        iii  List of Tables      Table No.  Title    I Active Faults within 50 km of the Site (embedded, p. 5)    II WGCEP (2015) Estimates of 30‐Year Probability of a Magnitude 6.7 or Greater  Earthquake (embedded, p. 6)    III Seismic Design Parameters (embedded, p. 13)    IV Liquefaction Screening Values (embedded, p. 14)    V Values Used in Liquefaction Evaluation (embedded, p. 14)    VI Estimated Liquefaction Settlement (embedded, p. 14)    VII General Engineered Fill Grading Requirements (embedded, p. 19)    VIII Class 2 Aggregate Base Grading Requirements (embedded, p. 19)    IX Imported Fill Requirements (embedded, p. 20)    X Summary of Compaction Recommendations (embedded, p. 20)    XI Deep Foundation Alternative Comparison (embedded, p. 22)    XII Lateral Capacity Input Parameters for General Soil Profile (embedded, p. 26)    XIII Gradation Requirements for Capillary Moisture Break (embedded, p. 27)    XIV Flexible Pavement Design (R‐Value = 18) (embedded, p. 29)    XV Rigid Pavement Design (embedded, p. 29)    XVI Tieback Verification Test Incremental Load and Hold Time (embedded, p. 34)    XVII Tieback Proof Test Schedule (embedded, p. 35)    XVIII Recommended Soil Parameters for Retaining Wall (embedded, p. 37)    XIX Corrosivity Analysis Results (embedded, p. 38)              iv        List of Figures      Figure No.  Title    1 Project Locus    2 Site Plan    3 Cross Section A‐A’    4 Cross Section B‐B’    5 16/22” Tubex Piles Axial Resistance Charts    6 18” Auger Cast Piles Axial Resistance Charts    7 Temporary Lateral Earth Pressures for Excavation                List of Appendices      Appendix  Title    A Boring Logs    B Cone Penetration Test Results    C Previous Hand‐Auger Boring Logs and Cone Penetration Test Results    D Laboratory Testing Results                  1  1. Introduction      This report presents the results of Haley & Aldrich, Inc.’s (Haley & Aldrich) design‐level geotechnical  investigation of the proposed project located at 101 Terminal Court in South San Francisco, California.  The approximately 8‐acre project site is bound by the Bayshore Freeway (U.S. Route 101) on the east  side, Terminal Court on the north side, San Bruno Canal on the south, and a commercial lot (131  Terminal Court) on the west side (Site), as shown on Figure 1. The proposed redevelopment spans  across north‐south of the Site and the adjacent 131 Terminal Court. This report describes the subsurface  explorations performed at the Site, provides our interpretation of the subsurface data, and includes  geotechnical recommendations for the proposed development.    The project team includes Skidmore, Owings & Merrill, LLP as the Architect. Structural and civil  engineers had not been determined at the time this report was prepared.    1.1 PURPOSE AND SCOPE    This geotechnical investigation was performed to obtain geotechnical information on subsurface  conditions at the Site and develop geotechnical design recommendations for the subject project. The  scope of the investigation as outlined in our proposal dated 7 January 2022 and authorized on  2 February 2022 included the following:   Preparing a site‐specific health and safety plan;   Visiting the Site to mark out the geotechnical investigation locations and coordinate utilities  clearance;   Notifying DigAlert at least 48 hours in advance of fieldwork;   A geotechnical field investigation consisting of:  – five (5) soil borings drilled to depths between 80 to 100 feet below ground surface (bgs);  – one (1) test hole to be used for Vibrating Wire Piezometer installation to a depth of  about 20 feet;  – three (3) cone penetration tests (CPTs) advanced to depths between 80 and 100 feet  bgs or practical refusal, and   – one (1) seismic CPT advanced to 100 feet bgs with shear wave velocity measurements  on Site and one on the adjacent 131 Terminal Court property.   Reviewing readily available geotechnical and geologic reports pertaining to the Site, specifically  the previous report prepared by Rockridge Geotechnical, Inc. (Rockridge, 2021);   Engineering analyses based on the results of the proposed field and laboratory testing  investigation performed by Haley & Aldrich, also based on a review of the previous field and  laboratory testing investigation presented in the Rockridge (2021) report;   Preparing a geotechnical report presenting our conclusions and recommendations for the  proposed development regarding:  – Soil and groundwater conditions at the Site;    2  – Expansion potential of the on‐site soils based on geotechnical laboratory tests and  proper mitigation methods (if required);  – Site seismicity and seismic hazards including potential from seismic events;  – Analyses of the infiltration rate based on the proposed infiltration tests;  – Foundation design criteria for the proposed buildings, including foundation type(s),  design capacities for various foundation systems capable of supporting the planned  structure, and Site improvements;  – Amount of settlement anticipated, given the presence of the new and existing fill  materials, proposed building foundations and slab‐on‐grades, and new Site  improvements;  – Uplift evaluation of the substructures and recommendations (if any);  – Design criteria for vertical and lateral support of the structures (if required);  – Design lateral earth pressures and drainage requirements for ramp retaining walls;  – Temporary shoring design parameters and an evaluation of the open cut stability for the  utility trench constructions;  – Recommendations for slabs‐on‐grade, including floor slabs and exterior concrete  flatwork;  – Recommendations regarding the proposed earthwork, including excavation, backfill,  subgrade preparation, utility trench, non‐expansive import fill (if required), slab‐on‐ grade subgrade, retaining wall backfill, import fill material;  – Flexible asphalt‐concrete and rigid Portland cement concrete pavement designs;  – Corrosion potential of the on‐Site soils; and  – Construction considerations (as appropriate).           3  2. Site Conditions and Proposed Construction      The Site lies west of U.S. Route 101 and is located about a mile northwest of the San Francisco  International Airport (SFO) as shown in Figure 1. The Site coordinates are approximately 37. 643154  degrees north and 122. 407188 degrees west. The Site is relatively flat with site grades ranging between  approximately Elevation (El.) 8.3 and 11.5 feet North American Datum of 1983 (NAD 83). In general, the  site grade is lowest in the north, and gradually increases toward the south.    There are three existing structures occupying the north of the Site. These structures are single‐story  garage and booth structures. The remainder of the Site is an asphalt paved surface parking lot similar to  the Park ‘N Fly on the opposite side of Terminal Court. Nearby site features include commercial  buildings, industrial facilities, and a surface parking lot. On the opposite side of U.S. Route 101, there are  hotels, gas station, and other commercial buildings. The San Bruno Canal cuts in from the bay shore  (east) to San Mateo Avenue (west) at the southern edge of the Site.    2.1 SITE HISTORY    Historical aerial photographs indicate that the Site was a marshland dating to the 1940s. The Site was  filled in the 1950s. The existing buildings and the adjacent site (131 Terminal Court) have occupied the  Site since the late 1970s or earlier. The parking lot and the existing structure at the Site was most likely  paved and built at around that time.    2.2 PROPOSED CONSTRUCTION    Based on the conceptual plans prepared by Skidmore, Owings & Merrill, LLP, we understand that US  Terminal Court Owner, LLC is planning on redeveloping the subject property as part of the larger  redevelopment plan for this area of South San Francisco, including construction of multiple 6‐story  buildings with subsurface parking garages at several buildings. A total of eight new buildings are  proposed: Buildings A1, A2, B2, and B4 will be located within the 101 Terminal Court parcel; buildings  B1, B3, B5, and B6 will be within the 131 Terminal Court parcel. There are two phases planned for the  new development. Phase I consists of Buildings A1, A2, and related amenities; Phase II includes the  remaining six buildings and amenities.    The proposed redevelopment project will include the construction of eight (8) new 6‐story buildings  with subsurface parking garages at several buildings and a new parking structure. Buildings A1, A2, B2,  and B4 are located within the 101 Terminal Court parcel; buildings B1, B3, B5, and B6 are within the 131  Terminal Court parcel. There are two phases planned for the new development. Phase I consists of  Buildings A1, A2, and related amenities; Phase II includes the remaining six buildings and amenities. The  proposed Phase I buildings (A1 and A2) will be six stories in above grade height with one level of below  grade parking.  The six Phase II buildings (B1 through B6) are planned to have six stories of above grade  height and two levels of below grade parking.  There will also be a parking structure with five stories  high with roof top parking and two levels of below grad parking.  We assume the project will also include  underground utilities, asphalt and concrete pavements, stormwater management facilities, and  landscaping. The project is still in a conceptual planning phase.     We have assumed that structural loads for the buildings will be on the order of 750 kips to 1,650 kips of  dead plus live loads for exterior and interior of the structures. General cuts and fills are anticipated to be    4  on the order of 3 feet or less, with below grade garage level excavation of 12 to 25 feet. Ramps for the  parking structure from the lowest levels up to the next level are assumed to be on the order of 10 feet  or less.    If the project differs significantly from that described, we should be contacted to review the applicability  of our recommendations.         5  3. Geology      3.1 REGIONAL GEOLOGY    The Site is located on the San Francisco Peninsula at the western Shoreline of the San Francisco Bay in  the Coast Ranges Geomorphic Province. The Coast Ranges Province is defined by northwest‐trending  mountain ridges and valleys that run approximately parallel to the San Andreas Fault Zone. The bedrock  within the province generally consists of Tertiary marine sedimentary deposits and volcanic rocks. The  upper bedrock is at least 100 feet bgs at the north end of the Site and dips sharply to at least 250 feet  bgs at the southern edge of the Site. The Site and surrounding area are inland of the former Bay margin  shoreline and east of the Santa Cruz Mountain Range, except for San Bruno Mountain, which is located  north of the Site. Based on mapping by Bonilla (1998), the Site is predominately underlain by Quaternary  surficial deposits of Artificial fill over tidal flat. The “Qaf/tf “unit described as Artificial fill over tidal flat  consists of clay, silt, sand, rock fragments, organic matter, and man‐made debris placed over tidal flats.  Historical stream channels that cross through the Site are mapped as the “Qaf” unit and described as  Artificial fill consisting of clay, silt, sand, rock fragments, organic matter, and man‐made debris. The  southwestern edge of the Site is near the mapped contact with the Colma formation. The “Qc” unit  described as the Colma Formation consists of mostly sandy clay, and silty sand; yellowish orange to gray.    3.2 REGIONAL SEISMICITY    The major active faults closest to the Site are the San Andreas, and San Gregorio, and Hayward‐Rodgers  Creek faults. For each of the active faults within 50 kilometers (km) of the Site, the distance and  direction from the Site and estimated maximum Moment magnitude,1 Mw, are presented in Table I.    TABLE I  Active Faults within 50 km of the Site  Fault Name  USGS  Fault  No.1  Distance  (km)1  Direction  from Site1  Mean  Characteristic Moment  Magnitude  Mean Slip  Rate1  (mm/yr)  Fault  Length1  (km)  San Andreas 1 4 West 7.95 9.0 410  San Gregorio Connected 60 13 West 7.50 >5.0 176  Hayward‐Rodgers Creek 55 26 East 7.33 9 150  Monte Vista‐Shannon 56 27 Southeast 6.50 0.2‐1.0 45  Calaveras 54 40 East 7.03 >5.0 123  Mount Diablo Thrust 353 42 Northeast 6.70 1.0‐5.0 25  Green Valley Connected 37 47 Northeast 6.80 1.0‐5.0 56  Notes:  1) Source: USGS Quaternary Fault and Fold Database of the United States.    Since 1800, four major earthquakes have been recorded on the San Andreas Fault, as summarized  below:   1836: An earthquake with an estimated maximum intensity of VII on the Modified Mercalli  (MM) scale occurred east of Monterey Bay, reportedly on the San Andreas Fault (Toppozada and    1 Moment magnitude is an energy‐based scale used to provide a physically meaningful measure of the size of a faulting  event. Moment magnitude is directly related to average slip and fault rupture area.    6  Borchardt, 1998). The estimated Moment magnitude, Mw, for this earthquake is about 6.25. This  earthquake was previously thought to have occurred on the northern portion of the Hayward  Fault.   1838: An earthquake occurred on the San Andreas Fault with an estimated intensity of about  VIII‐IX (MM), corresponding to an Mw of about 7.5.   1906: The San Francisco Earthquake of 1906 caused the most significant damage in the history  of the Bay Area in terms of loss of lives and property damage. This earthquake created a surface  rupture approximately 470 km in length along the San Andreas Fault from Shelter Cove to San  Juan Bautista. It had a maximum intensity of XI (MM), an Mw of about 7.9, and was felt 560 km  away in Oregon, Nevada, and Los Angeles.   1989: The most recent major earthquake to affect the Bay Area was the Loma Prieta Earthquake  of 17 October 1989. It occurred in the Santa Cruz Mountains with an Mw of 6.9 and was  approximately 33 km from the Site.    Several earthquakes have also been recorded on the Hayward and Calaveras Faults since the late 1800s,  as summarized below:   1861: An earthquake of unknown magnitude (probably an Mw of about 6.5) was reported on the  Calaveras Fault.   1868: An earthquake with an estimated maximum intensity of X on the MM scale occurred on  the southern segment (between San Leandro and Fremont) of the Hayward Fault. The estimated  Mw for the earthquake is 7.0.   1984: The most recent significant earthquake on the Calaveras Fault was the 1984 Morgan Hill  earthquake (Mw = 6.2).    The 2014 Working Group on California Earthquake Probabilities (WGCEP) at the U.S. Geological Survey  (USGS), in coordination with the California Geological Survey (CGS) and Southern California Earthquake  Center, predicted a 72 percent chance of a magnitude 6.7 or greater earthquake occurring in the San  Francisco Bay Area in 30 years (i.e., before the year 2044). More specific estimates of the probabilities  for different faults in the Bay Area are presented in Table II.    TABLE II  WGCEP (2015) Estimates of 30‐Year Probability  of a Magnitude 6.7 or Greater Earthquake  Fault Name Probability (%)  Hayward‐Rodgers Creek 14.0  San Andreas 6.4  San Gregorio Connected 2.5  Mount Diablo Thrust 2.5           7  4. Subsurface Explorations     This report is based on the findings of a recent geotechnical investigation. Rockridge (2021) prepared a  Preliminary Geotechnical Report dated 12 January 2021 that was also made available to Haley & Aldrich.  The current field exploration program was performed by Haley & Aldrich between 14 and 18 March  2022. The approximate locations and designations of the subsurface explorations performed for these  two programs are shown on Figure 2 – Site Plan.    Haley & Aldrich explored the subsurface conditions at the Site by:   Advancing four (4) CPTs (designated CPT‐2 through CPT‐4);   Performing two (2) seismic shear wave velocity tests at SCPT‐1 and SCPT‐2; and   Drilling and sampling five (5) soil borings (designated HA‐1 through HA‐5).    A summary of the various exploration programs is presented below.    4.1 BORINGS    Between 14 and 18 March 2022, Haley & Aldrich explored the subsurface conditions at the Site by  drilling exploratory borings HA‐1 through HA‐5 to depths ranging from about 101.5 to 126.5 feet bgs,  using a truck‐mounted drill rig. Prior to performing our field investigation, we notified Underground  Service Alert (USA) and retained a private utility locator to check that the boring locations were clear of  existing utilities.    The borings were drilled by Pitcher Drilling of Palo Alto, California under the direction of our field  engineer, who logged each hole and collected samples for soil classification and laboratory testing  purposes. Soil samples were obtained at discrete locations during drilling using a Modified California  sampler (MCS), a Standard Penetration Test (SPT) sampler, and Shelby tubes. The depth where each  sample was collected is shown on the boring logs. The MCS has a 3.0‐inch outside diameter and a  2.43‐inch inside diameter and is lined with three, 6‐inch‐long brass or stainless steel tubes. Shelby tube  samples were collected by pushing the 3‐inch diameter tubes into fine‐grained soil under pressure. The  unlined SPT sampler has a 2.0‐inch outside diameter and a 1.38‐inch inside diameter. MCS and SPT soil  samples were collected by driving each respective sampler to a depth of 18 inches or to penetration  refusal, whichever was encountered first, using a 140‐pound, above‐ground automatic hammer falling  approximately 30 inches. Uncorrected blow counts were recorded for each 6‐inch‐long interval of  sampler penetration and are presented on the boring logs in Appendix A. After the samplers were  withdrawn from the test borings, the samples were removed, examined for logging purposes, labeled,  and sealed to retain the natural moisture content for laboratory testing. Prior to sealing the samples,  strength characteristics of the cohesive soil samples recovered were evaluated using a hand‐held pocket  penetrometer. The results of these tests are shown adjacent to the samples on the boring logs in  Appendix A.    Upon completion of the drilling work, each boring was filled to the surface with a cement grout in  accordance with the San Mateo County Environmental Health Services Division permit requirements.  Soil cuttings generated during the subsurface investigation were collected in 55‐gallon drums with lids  and were submitted to an environmental laboratory to analyze for off‐site disposal purposes.      8  4.2 CONE PENETRATION TESTS    On 14 and 15 March 2022, Cone Penetration Tests (CPTs) were performed by Gregg Drilling & Testing,  Inc. (Gregg Drilling) of Martinez, California. The investigation included a total of three CPTs (designated  as CPT‐2 through CPT‐4) and one seismic CPTs (designated as SCPT‐1) advanced to depths between 83  and 100 feet. SCPT‐2 was advanced in the 131 Terminal Court parcel. The CPTs consisted of hydraulically  pushing a 1.75‐inch diameter, cone‐tipped probe into the soil using a rig with a push capacity of 20 tons.  The cone tip measures tip resistance and the friction sleeve behind the cone tip measures frictional  resistance. Electrical strain gauges within the cone continuously measured soil parameters during the  entire depth the cone was advanced. Soil data, including tip resistance and frictional resistance, were  recorded and then processed to provide information for use in our geotechnical engineering analyses.  One pore pressure dissipation test was performed at a depth of around 20 feet at each CPT to measure  hydrostatic water pressures and to infer the approximate depth to groundwater. Upon completion, the  CPT hole was backfilled with cement grout in accordance with San Mateo County Environmental Health  Services Division permit requirements.    To conduct the seismic shear wave test, the penetration of the cone is stopped and the rods are  decoupled from the rig. An automatic hammer is triggered to send a shear wave into the soil. The  distance from the source to the cone is calculated knowing the total depth of the cone and the  horizontal offset distance between the source and the cone. Seismic shear wave tests were performed  at every 5‐foot interval to a depth of 100 feet at both SCPT‐1 and SCPT‐2.    The stratigraphic interpretation of the CPT data was performed based on relationships between cone  bearing and sleeve friction versus penetration depth. The friction ratio, which is sleeve friction divided  by cone bearing, is a calculated parameter used to infer soil behavior type. Generally, cohesive soil  (clays) have high friction ratios, low cone bearing and generate large excess pore water pressures.  Cohesionless soil (sands) have lower friction ratios, high cone bearing and generate small excess pore  water pressures. The interpretation of soil properties from the cone data has been carried out using  recent correlations developed by Robertson and Cabal (2010). The CPT logs and shear wave velocity  tests generated for the exploration program by Gregg, showing tip resistance and friction ratio by depth  and interpreted soil classifications and strengths, are presented in Appendix B.    4.3 FIELD EXPLORATION BY OTHERS    Rockridge (2021) completed field investigations in December 2020. Their investigations included:   two (2) hand‐auger borings (designated hand‐auger as “HA”: HA‐1 and HA‐3) were augered to a  maximum depth of 5 feet bgs; and   four (4) CPTs (designated as CPT‐1 through CPT‐4) to a maximum depth of 94 feet bgs.    The hand‐auger borings were augered adjacent to the CPT locations. Rockridge reported that hand‐ auger borings HA‐2 and HA‐4 met refusal just below pavement; therefore, they only included HA‐1 and  HA‐3 in the report. Previous hand‐auger borings and CPTs are presented in Appendix C.    4.4 GEOTECHNICAL LABORATORY TESTING    Soil samples from the exploratory test borings were re‐examined at our office to review their Unified  Soil Classification System (USCS) classification and selected samples were submitted to Cooper Testing    9  Labs, Inc. (Cooper) in Palo Alto, California for geotechnical laboratory testing. Samples were tested to  measure moisture content, dry density, Atterberg limits, Resistance (R)‐Value, triaxial unconsolidated  undrained strength, and consolidation properties. Geotechnical laboratory test results are presented in  Appendix D.    Two samples of near‐surface soil were also submitted to CERCO Analytical, Inc. of Concord, California  and tested for corrosion properties, including pH, resistivity, sulfate content, and chloride content. The  results of the testing are included in Appendix D.           10  5. Subsurface Soil and Groundwater Conditions      5.1 SUBSURFACE CONDITIONS    Based on our review of the existing geotechnical report and information gathered during our  geotechnical investigation, we estimate that approximately 7½ to 8½ feet of undocumented fill blankets  the Site below the asphalt concrete pavement. Where encountered, the fill generally consists of clayey  gravel, silty sand, lean clay, and clayey sand with or without gravel. In the Rockridge (2021) report, hand‐ auger refusal on gravelly fill is noted. The locations of our geotechnical investigation locations, along  with previous investigation locations from others are shown in Figure 2.    The subsurface condition is generally consistent and comparable to existing subsurface investigation  data. An overview of subsurface conditions is presented as cross sections in Figures 3 and 4. Below the  fill, in our borings and CPTs we encountered the Young Bay Mud (marsh deposit) to depths ranging from  17 to 41 feet bgs. The Young Bay Mud is mostly soft to medium stiff consistency and known to be highly  compressible. Across the Site, the thickness of the Young Bay Mud is generally about 20 feet. However,  boring HA‐4, which we drilled, and CPT‐1 from Rockridge (2021) indicate that the soft clay layer starts to  dip toward north of the Site. Our boring HA‐4 at the north encountered the bottom of Young Bay Mud at  41 feet bgs. Underlying the Young Bay Mud is the Colma formation (alluvial deposit) consisting of  interbedded medium dense to very dense sand, clayey sand, and silty sand and stiff to hard clayey sand  and clay to depths between 65 and 70 feet bgs. Below the Colma formation is the Old Bay deposit,  which is characterized by stiff to hard fat clay, to depths ranging from 77 to 85 feet bgs. This Old Bay  deposit is underlain by interbedded dense to very dense sand and silty sand and very stiff to hard sandy  clay and clay to the maximum exploration depth of 126½ feet bgs. None of the borings that we drilled  encountered competent mélange bedrock (Franciscan Complex) at the termination depths. However,  our CPT‐3 and all previous CPTs from Rockridge (2021) encountered high tip resistance and refusal at  depths ranging from 83 and 94 feet bgs, at the bottommost interbedded layer.     5.2 SHEAR WAVE VELOCITY CONDITIONS    Shear wave velocity profile of subsurface alluvial soils at the Site was recorded by means of seismic CPT  shear wave testing at SCPT‐1. The test results indicate that the average shear wave velocities of the soils  within the upper 100 feet of the Site are approximately 208 meters per second (m/s) (684 feet per  second [ft/s]).  Similar results were encountered in SCPT‐2 for the adjacent parcel at 131 Terminal Court.      5.3 GROUNDWATER CONDITIONS    Rockridge (2021) reported groundwater at depths ranging from 3 to 9 feet bgs in their CPTs during their  exploration in December 2020. During our subsurface explorations in mid‐March 2022, we encountered  groundwater at depths between 5 and 8 feet bgs in our CPTs and 7 to 7½ feet within our borings. Note  that groundwater may fluctuate over time.    Historical groundwater at the project site was mapped by CGS (2021) at a depth of approximately 2 feet  bgs. Rockridge (2021) cited a groundwater monitoring report prepared by Conestoga‐Rovers &  Associates in May 2010, for a former Olympian station located at the north of 131 Terminal Court, which  indicated historical high groundwater depths of 0.4 to 3 feet between 2000 and 2010. Based on our  findings, we recommend that a design groundwater depth of 1 foot bgs be used.    11           12  6. Discussion and Conclusions      Based on our review of subsurface information for the Site, we conclude the primary geotechnical issues  affecting the design and construction of the planned industrial development include the following:   site seismicity and potential seismic hazards including liquefaction;   soft, compressible soils near the existing ground surface;   undocumented fill;   high groundwater elevations; and   selection of an appropriate foundation system(s).    Our discussion of these and other geotechnical issues are presented in the remainder of this report.    6.1 SEISMICITY AND SEISMIC HAZARDS    During a major earthquake, seismic shaking has the potential to occur at the Site, as is typical  throughout the Bay Area, and as experienced during the 1989 Loma Prieta event. Shaking during an  earthquake can result in ground failure, such as that associated with soil liquefaction, lateral spreading,  and cyclic densification. Haley & Aldrich’s assessment of these potential seismic hazards is presented in  the following sections.    6.1.1 Site Seismicity    A seismic hazard analysis was performed using the USGS Unified Hazard Tool  (https://earthquake.usgs.gov/hazards/interactive/) website. Our deaggregation analysis utilized the  USGS Dynamic Conterminous U.S. 2014 (v.4.2) edition. For our analyses, we evaluated the Site as Site  Class D, based on an average shear wave velocity over the top 100 feet (30 meters) of the site (Vs30) of  about 684 ft/s; this value was calculated based on the average shear wave velocity measured at SCPT‐1  and SCPT‐2 during our field investigation on 14 March 2022.    Based on the seismicity of faults that may impact the Site and the results of the deaggregation analysis,  a design earthquake with an Mw of 7.86 was selected for the seismic hazard evaluation. The peak  horizontal ground acceleration (PHGA) for the Site, which is based on the Maximum Considered  Earthquake (MCE) with a return interval of 2,475 years, or a 2 percent probability of exceedance in  50 years, is 1.07g. The risk‐based site‐modified peak ground acceleration (PGAM) for the Site is 0.97g;  this value was computed based on procedures outlined in ASCE 7‐16 (ASCE, 2017). Recommended code‐ based seismic parameters for design of the proposed structures in conformance with the 2019 California  Building Code (California Building Standards Commission, 2019) and ASCE 7‐16 are presented in Table III.      13  TABLE III  Seismic Design Parameters  Seismic Parameter Design Value  Site Class (ASCE 7‐16 Table 1613.5.2) D  Risk Category II  MCER1 Ground Motion (Period = 0.2 seconds), Ss 2.056 g  MCER Ground Motion (Period = 1.0 seconds), S1 0.851 g  Peak Ground Acceleration, PGA 0.881 g  Site Amplification Factor at 0.2 seconds, Fa 1.0  Site Amplification Factor at 1.0 seconds, Fv ‐‐  Site Amplification Factor for PGA, FPGA 1.1  Site‐Modified Peak Ground Acceleration, PGAM 0.97 g  Site‐Modified Spectral Acceleration Value at 0.2 seconds, SMS 2.056 g  Site‐Modified Spectral Acceleration Value at 1.0 seconds, SM1 ‐‐  Design Spectral Acceleration at 0.2 seconds, SDS 1.371 g  Design Spectral Acceleration at 1.0 seconds, SD1 ‐‐  Notes:  1) MCER = Risk‐targeted maximum considered earthquake  2) g = acceleration of gravity  3) Values of Fv, SM1, and SD1 are undefined for this site class without performance of a site‐specific ground motion hazard analysis.  4) Design values presented above are based on a site located at latitude / longitude = 37.643154 / ‐122.407188.    6.1.2 Soil Liquefaction    Liquefaction is the process in which saturated, cohesionless soil experiences a temporary loss of  strength due to the buildup of excess pore water pressure during cyclic loading resulting from  earthquake ground motions. The type of soils most susceptible to liquefaction are loose, clean,  saturated, uniformly graded sand and silt that have low clay content. Flow failure, lateral spreading,  differential settlement, loss of bearing strength, ground fissures, and sand boils are evidence of  liquefaction.    According to an evaluation by CGS (2021) for seismically induced hazards, the project site is mapped  within a Seismic Hazard Zone that may have the potential for liquefaction.    We performed screening for liquefiable soils using the Boulanger and Idriss (2014) criteria, which state  that fine‐grained soils with a plasticity index of 7 or greater are not susceptible to liquefaction. Haley &  Aldrich performed three Atterberg Limits tests on samples obtained within borings HA‐3 and HA‐5.  Plasticity indexes from each of these samples indicate that the selected clayey soils (CL or CH) are not  susceptible to liquefaction.      14  TABLE IV  Liquefaction Screening Values  Exploration  No.  Sample Depth  (ft)  Plasticity  Index (PI)  Liquid  Limit (LL)  USCS Soil  Type  HA‐3 14 10 30 CL  HA‐3 45 12 27 SC  HA‐5 9.5 52 89 CH  HA‐5 77 40 65 CH  Notes:  We evaluated liquefaction potential at the Site by performing analyses in accordance with the  methodology presented in publications prepared by Idriss and Boulanger (2008 and 2014). Our  liquefaction analyses were performed using data from our explorations, which extended to depths of  approximately 83 to 100 feet bgs.    The parameters used in the liquefaction evaluation are shown in Table V.    TABLE V  Values Used in Liquefaction Evaluation  Liquefaction Evaluation Parameter Value  Depth to Groundwater, during current explorations (feet bgs) 5 ‐ 8  Depth to Groundwater, during Design Earthquake (feet bgs) 1.0  Design Peak Ground Acceleration 0.97g  Predominant Earthquake Moment Magnitude, Mw 7.86  Factor of Safety for Liquefaction Triggering 1.3    Based on our analyses, we conclude that the potential for on‐site liquefaction to occur within the upper  50 feet bgs is generally high, due to the presence of saturated silty soils encountered in most subsurface  exploration locations. The potentially liquefiable soils include sand, silty sand, and sandy silt which were  identified between approximately 16 and 80 feet bgs. The thickness of the layers is variable across the  Site. Total free‐field (volumetric) settlement from a design seismic event is estimated to be between  about ½ to  inches within the upper 50 feet with differential settlements typically about ½ to 2½ inches  over about 50 feet in the CPTs.  Although the results of the analysis are reported for the borings, the  sampling intervals can over predict the settlement.  As such, we are disregarding these estimates.    TABLE VI  Estimated Liquefaction Settlement  Exploration  No.  Exploration  Depth (feet)  Estimated  Settlement in  Upper 50 feet (in.)  Estimated Settlement  for Full Depth (in.)  CPT‐2 100 3.8 5.7  CPT‐3 83 3.3 4.5  CPT‐4 98 1.3 2.2  SCPT‐1 100 2.8 5.7  SCPT‐21 99 4.8 7.7  HA‐12 102 4.1 4.3  HA‐22 102 0.4 3.1  HA‐32 118 5.0 5.0    15  HA‐42 127 7.9 12.4  HA‐52 114  6.5 6.5  Note:  1) This SCPT was performed at the adjacent property, 131 Terminal Court.  2) Due to sampling intervals, these settlements are not considered representative.    6.1.1 Lateral Spreading    Lateral spreading is a potential hazard commonly associated with liquefaction where extensive ground  cracking and settlement occurs as a response to lateral migration of subsurface liquefiable material.  These phenomena typically occur adjacent to free faces such as slopes and creek channels.    The free face for San Bruno Canal is located at the southern edge of the project site. We do not have  surveyed geometry of the canal, and therefore estimated the geometry based on Google Earth. We  completed a preliminary lateral spreading analysis based on Zhang et al. (2004). Assuming a site setback  distance of 55 feet and free face height of 6 feet, we estimate the lateral spreading at the southern edge  of the site to be approximately 30 to 130 inches.  During the design level phase of the project, more  detailed topography should be collected and a detailed analysis presented.    6.1.1 Sand Boils    We evaluated the soil profile at CPT‐2 through CPT‐4, and SCPT‐1 for the potential for liquefaction‐ related surface manifestations to occur following the procedure presented by Ishihara (1985). Our  analyses indicate that the thickness of the non‐liquefiable mantle at selected locations may not be  sufficient to prevent surface manifestations from occurring during and shortly after the design seismic  event. These manifestations could include sand boils, a phenomenon where liquefied soil is displaced  and ejected up to the ground surface. If sand boils were to appear, an unpredictable level of additional  liquefaction‐induced settlement could result, causing significant distress to overlying structures and  improvements.    6.1.2 Cyclic Densification    Seismically induced compaction or densification of non‐saturated granular soil (such as sand above the  groundwater table) due to earthquake vibrations can result in settlement of the ground surface. Based  on the results of our subsurface exploration program, and due to the estimated high‐water table during  a seismic event, we conclude that the potential for cyclic densification at the Site is low.    6.1.3 Fault Rupture    Historically, ground surface displacements closely follow the trace of geologically young faults. The Site  is not within an Earthquake Fault Zone, as defined by the Alquist‐Priolo Earthquake Fault Zoning Act, and  no known active or potentially active faults exist on the site (California Department of Conservation,  2021). Based on this information, we conclude the risk of surface faulting and secondary ground failure  is low.      16  6.1.1 Tsunami    The Site is subject to mapping in the California Tsunami Hazard Area of San Mateo County. Based on  maps published by the State of California (2021), the Site is located outside of the area predicted to be  affected by tsunamis. Therefore, we judge that the potential for a seismically induced wave to impact  the Site to be nil.    6.2 EXPANSION POTENTIAL    Visual classification of soil samples collected during our exploration indicate that the near‐surface fine‐ grained soils have very low to low expansion potential. Expansive soil is characterized by their ability to  undergo significant volume change (shrink or swell) due to variations in moisture content. Changes in  soil moisture content can result from rainfall, landscape irrigation, perched groundwater, drought or  other factors. Changes in soil moisture may result in unacceptable settlement or heave of structures,  concrete slabs supported on‐grade or pavements supported on these materials. Due to the low  expansive nature of the surficial soil (fill) mitigation measures are not required.  Although not  anticipated, if slabs are supported on Bay Mud (marsh deposits), we should review these conclusions  and recommendations.    6.3 WEAK SOIL DEPOSIT AND FOUNDATION SETTLEMENT    Our subsurface investigation indicates that approximately 7½ to 8½ feet of fill is present below the  asphalt concrete and the fill is primarily underlain by the Young Bay Mud (marsh deposit) to depths  ranging from 17 to 41 feet. The existing fill are variable with respect to the quality of materials and  compaction level. The field data including resistance N‐values suggest there are areas of fill which  suggest at least some of the fill materials were likely placed without compaction and that it is  inconsistent in density.    The underlying Young Bay Mud (marsh deposit) appears to be the limiting soil with respect to strength  and compressibility. Based on the anticipated column loads for the proposed structures and significant  depths of fill encountered during our explorations, spread footing foundations do not appear to be an  economical approach for support of the proposed structures. The consolidation test results indicate the  soft Young Bay Mud is highly compressible and slightly over consolidated (see Appendix D). Based on  this information, we estimate up to 5½ inches of settlement will occur under the new fill and building  pad at the Site with maximum grade raise of 3 feet and conventional shallow spread footing foundation  using a maximum allowable dead plus live bearing pressure of 2,000 pounds per square foot (psf). We  also estimate that approximately 50 percent of the total settlement will occur within about 7 months  after the loads are applied. At the HA‐4 location (north of the Site), where the Young Bay Mud is  thickest, it will take a longer time to consolidate. This magnitude of settlement under static loading  conditions will exceed general requirements for building performance.    At this Site, there are substantially denser coarse alluvial soils (Colma Formation) below the Young Bay  Mud are judged suitable for support of the proposed structures. Because of this, it may be more  economical to support the proposed structures on deep foundations bearing at the alluvial layer. Our  recommendations for deep foundations, including Tubex and auger‐cast piles, are given in the next  sections.      17  Due to the potential settlement, we recommend that the interior floors be design as structural slabs and  not rely on the subgrade for support.     6.4 TEMPORARY SHORING OPTIONS    Construction of the below‐grade levels will require excavation depths 12 to 25 feet bgs depending on  the number of below grade levels of parking.  These excavation depths include an excavation of  approximately 1 foot below the base of the slab to accommodate a gravel layer, mud slab, and  waterproofing material.  As such, a support of excavation system is required to facilitate below‐grade  construction and to mitigate the flow of groundwater entering the excavation.  The most appropriate  shoring system(s) should take into account the requirements for protecting adjacent properties and  improvements, as well as cost.  We qualitatively evaluated the following systems:   Conventional soldier pile and lagging;   Concrete diaphragm wall or soil‐cement column walls.    Conventional soldier pile and lagging walls are difficult to install with soft compressive clays and allow  water into the excavation.  Mixed‐in‐place soil‐cement column walls provide a relatively rigid shoring  system that is capable of significantly limiting lateral deformations and ground subsidence adjacent to  the shoring system.  This system is considered to be a low‐permeability shoring system and would  provide superior resistance to lateral groundwater infiltration into the excavation.  These walls will  require internal and/or external lateral supports around the excavation perimeter to resist lateral  pressures.    6.5 CONSTRUCTION DEWATERING AND WATER LEVEL ASSUMPTIONS    Groundwater is expected to be encountered as shallow as approximately 1 foot bgs.  Construction of  utilities and other improvements that extend below groundwater levels will require dewatering and  shoring programs capable of adapting to varied soil and groundwater conditions.  We anticipate that  water will have a low flow rate, although zones of sandy soils may present moderate to rapid water  flow.    Due to the presence of generally fine‐grained soils, though with some granular zones, the use of  pumping from sumps within excavations is expected to be feasible for trench dewatering.  However, the  larger (e.g., underground parking) excavations may require the use of well point dewatering, unless  watertight shoring embedded into the clay layer is used.  Pumping from sumps may be effective in  removing water from the bases of trenches but will not prevent or reduce the greater risk of trench wall  caving and sloughing caused by seepage.    We anticipate that the base of excavations will be soft and/or unstable if groundwater is present or  within a few feet of the base of the trenches.  If that is the case, we recommend placing stabilization  material at the base of excavations.  The use of a geotextile separation fabric may be necessary below  stabilization material to help prevent the stabilization material from pushing into the unstable base  materials.             18  7. Recommendations      7.1 EARTHWORKS    7.1.1 Site Preparation and Grading    The proposed building and parking lot areas should be cleared of existing pavements, trees, abandoned  utilities and other obstructions. The proposed building and parking lot areas should be stripped of soil  containing over 3 percent organic matter (if present). We anticipate the excavation for this project can  be made using conventional earth‐moving equipment.    All active or inactive utilities within the construction area should be protected, relocated, or abandoned.   Any pipelines to be abandoned within the proposed buildings should either be removed or be filled with  sand‐cement slurry.  Pipelines 2 inches in diameter or less may be left in place beneath the building.   Pipelines between 2 and 6 inches in diameter may be left in place within the limits of the building  provided they are filled with sand‐cement slurry.  We recommend that abandoned in place lines be  grouted in 100‐foot‐linear sections to confirm that grout has fully filled the abandoned pipe.  Pipelines  larger than 6 inches in diameter within the planned addition should be removed.  At locations where  exiting utility lines will remain in place, foundations should be extended below a plane projected 45  degrees upwards from any point in the excavation.  Existing utilities within the parking lot areas should  be addressed as above where appearing at depths of less than 4 feet below the proposed ground  surface elevation. Where existing utilities within proposed parking lot areas are deeper than 4 feet  below the proposed ground surface, the utilities may either be removed, as described above, or  abandoned in place.    7.1.2 Subgrade Preparation    The Site should be rough graded to accommodate the proposed grading plan. Recommendations for  mitigation of existing fill are presented for each building type below. In proposed building areas,  subgrade preparation should extend at least 5 feet beyond the limits of the proposed building slabs and  any adjoining flatwork. In exterior concrete slab and pavement areas, subgrade preparation should  extend at least 2 feet beyond the limits of these improvements.    We estimate that approximately 7½ to 8½ feet of undocumented fill is present below the asphalt  concrete pavement. At the building area, loose or disturbed soil or undocumented fill soils should be  over‐excavated to a minimum of 1 foot below existing grade or finished pad elevation, whichever is  deeper. The exposed subgrade should be scarified to a depth of at least 12 inches, moisture conditioned  and compacted in accordance with the recommendations given in the section entitled “Fill Placement  and Compaction.”    In non‐foundation areas that will receive new fills, building loads, and site improvements, such as  pavements, sidewalks, and  other exterior slabs, the exposed soil subgrade should be evaluated by the  Geotechnical Engineer. If fill is exposed, it should be over‐excavated to a minimum of 1 foot below  existing grade or finished pad elevation, whichever is deeper. The exposed subgrade should be scarified  to a depth of at least 12 inches, moisture conditioned, and compacted in accordance with the  recommendations given in the section entitled “Fill Placement and Compaction.” If undisturbed,    19  competent native soil, consideration may be given by the Geotechnical Engineer to reduce the over‐ excavation.    Prepared soil subgrades should be non‐yielding when proof‐rolled by a fully loaded water truck or  equipment of similar weight. Moisture conditioning of subgrade soil should consist of adding water if  the soil is too dry and allowing the soil to dry if the soil is too wet. After the subgrades are properly  prepared, the areas may be raised to design grades by placement of engineered fill.    7.1.3 Material for Fill    Except for organic laden soil, the on‐Site soil is suitable for use as general engineered fill if it is free of  deleterious matter and satisfies the criteria in Table VII. Soil for use in engineered fill should be  inorganic, and free of deleterious materials and hazardous substances. For this project, inorganic soil is  soil with an organic content of less than 3 percent by weight or without visible organic matter deemed  excessive by Haley & Aldrich.    TABLE VII  General Engineered Fill Grading Requirements  Sieve Size Percentage Passing Sieve  3 inch 100  1½ inch 85‐100    7.1.4 Re‐Use of On‐site Material    Any existing asphalt or aggregate base that is removed during demolition may be suitable to be  pulverized and mixed with the underlying base for use as engineered fill if it has an organic content of  less than 3 percent by dry weight and meets the following requirements presented under the “Material  for Fill” section of this report.    The processed asphalt concrete/base material may be used as Class 2 Aggregate base if it meets the  following requirements from Section 26 of the Caltrans Standard Specifications:    TABLE VIII  Class 2 Aggregate Base Grading Requirements  Sieve Size Percentage Passing  1 inch 100 min.  ¾ inch 90‐100  No. 4 35‐60  No. 30 10‐30  No. 200 2‐9  Note Quality Requirements:  Sand Equivalent: 25 min R‐value: 78 min    Site recycled material may be processed and reused as engineered fill, non‐expansive fill, or aggregate  base if it meets the requirements presented in this report for the specific materials.      20  7.1.5 Imported, Non‐expansive Fill    All imported fill soils should be nearly free of free organic or other deleterious debris, essentially non‐ plastic, and less than 3 inch minus in maximum dimension.  Specific requirements for import fill are  provided below.    TABLE IX  Imported Fill Requirements  Sieve Size Percentage Passing Sieve  3 inch 100  1½ inch 85‐100  #200 Screen 8‐40  Atterberg Limits Percent  Plasticity Index 12 or less  Liquid Limit Less than 30    Fill materials should be approved by the project geotechnical engineer prior to placement and delivery  to the Site. At least 5 working days prior to importing to the Site, a representative sample of the  proposed import fill should be delivered to our laboratory for evaluation.    7.1.6 Fill Placement and Compaction    Fill materials should be placed and compacted in horizontal lifts, each not exceeding 8 inches in  uncompacted thickness. Compaction of fill should be performed by mechanical means only. Due to  equipment limitations, thinner lifts may be necessary to achieve the recommended degree of  compaction. Fill should be placed in accordance with Table X, Summary of Compaction  Recommendations.    TABLE X  Summary of Compaction Recommendations  Area Compaction Recommendations (See Notes 1 through 4)  Subgrade Preparation and  Placement of General Engineered  Fill,5 Including Imported Non‐ expansive Fill  Compact upper 12 inches of subgrade and entire fill to a minimum of  90 percent compaction at near to slightly over optimum moisture content.  Where interior flatwork is exposed to vehicular traffic, compact aggregate  base to a minimum of 95 percent compaction at near optimum moisture  content.  Trenches6 Compact trench backfill to a minimum of 90 percent compaction at near  to slightly over optimum moisture. Where trenches will be under the  pavement section, flatwork, or other improvements, the upper 12 inches,  measured from finished grade of the trench backfill should be compacted  to a minimum of 95 percent compaction.    21  Area Compaction Recommendations (See Notes 1 through 4)  Exterior Flatwork Compact upper 12 inches of subgrade to a minimum of 90 percent  compaction at near to slightly over optimum moisture content. Compact  aggregate base to a minimum of 90 percent compaction at or above  optimum moisture content. Where exterior flatwork is exposed to  vehicular traffic, compact aggregate base to a minimum of 95 percent  compaction at near optimum moisture content.  Paved Areas Compact upper 12 inches of subgrade to a minimum of 95 percent  compaction at near to slightly over optimum moisture content. Compact  aggregate baserock to a minimum of 95 percent compaction at near  optimum moisture content.  Notes:  1) Depths are below finished subgrade elevation.  2) All compaction requirements refer to relative compaction as a percentage of the laboratory standard described by ASTM D‐1557 (latest  version). All lifts to be compacted shall be a maximum of 8 inches loose thickness.  3) All compacted surfaces, such as fills, subgrades, and backfills need to be firm and stable, and should be unyielding under compaction  equipment.  4) Where fills, such as backfill placement after removal of existing underground utility lines, are greater than 7 feet in depth, the portion of  the fill deeper than 7 feet should be compacted to a minimum of 95 percent compaction.  5) Includes building pads.  6) In landscaping areas, this percent compaction in trenches may be reduced to 85 percent. Water jetting or flooding to obtain compaction of  backfill should not be permitted.    7.1.7 Weak or Wet Subgrade Mitigation    Rockridge (2021) reported groundwater level at depths ranging from 3 to 9 feet bgs in their CPTs during  their exploration in December 2020. During our subsurface explorations in mid‐March 2022, we  encountered groundwater at depths between 5 and 8 feet bgs in our CPTs and 7 to 7½ feet within our  borings. Groundwater may fluctuate over time. Excavations for foundations, utilities, and other  improvements may encounter weak or wet soil conditions depending on the depths and elevations of  these features. If weak or wet soil subgrade is encountered during grading and adequate compaction  cannot be achieved, the geotechnical engineer should be notified immediately to assess the condition of  the weak or wet subgrade and provide site‐specific recommendations for stabilizing and/or repairing the  exposed subgrade. Potential subgrade repair options include:   Over‐excavating and removing the weak or wet soil and replacing it with select non‐expansive  fill underlain by geotextile tensile fabric (Mirafi 500X or equivalent).   Stabilizing the exposed subgrade by thoroughly blending a lime or cement admixture into the  weak or wet soil at a concentration of approximately 5 percent of dry weight of soil being  treated, and subsequently compacting the treated subgrade to at least 90 percent relative  compaction.    7.1.8 Underground Utilities    Excavations for utility trenches can be made with a backhoe. All trenches should conform to the current  Cal/OSHA requirements. Backfill for utility trenches and other excavations is also considered fill, and it  should be compacted according to the recommendations presented in the section “Fill Placement and  Compaction.” Jetting of trench backfill should not be permitted. Special care should be taken when  backfilling utility trenches in pavement areas. Poor compaction may cause excessive settlements,  resulting in damage to the pavement section.      22  Underground utilities should be located above a 1.5:1 (horizontal to vertical) plane projected downward  from the bottom of the new footings to avoid undermining the footings during the excavation of the  utility trench.    Pipes or conduits should be supported on bedding material with a thickness equal to D/4 (with D equal  to the outside diameter of the pipe) or 4 inches of sand or fine non‐angular gravel below the pipe,  whichever is greater. After the pipes and conduits are tested, inspected (if required) and approved, they  should be covered to a minimum depth of 6 inches with sand or fine non‐angular gravel, which should  be mechanically tamped.    Soil excavated from utility trenches may require moisture‐conditioning (drying) prior to reusing the  material as compacted on‐site general fill. Groundwater was encountered at depths between 5 and  8 feet bgs in our CPTs and 7 to 7½ feet within our borings during our exploration; therefore, any  excavations extending below groundwater will require dewatering. Dewatering should lower the  groundwater level to a minimum of 2 feet below the bottom of the excavation. If the soil exposed in the  bottom of the excavation is soft or wet, it will be necessary to over‐excavate the soil and replace it with  crushed rock to create a working platform. The depth of over‐excavation should be determined in the  field at the time of construction; but for planning purposes, a depth of 12 inches may be assumed.    7.2 DEEP FOUNDATIONS    As discussed in the “Subsurface Conditions” section, the marsh deposit is underlain by an alluvium layer  and Colma Formation soil consisting of interbedded medium dense to very dense sand, clayey sand, and  silty sand and stiff to hard clayey sand and clay to depths between 65 and 70 feet bgs. Based on this, we  recommend that deep foundation be extended to a depth of at least 50 to 60 feet bgs. Therefore, we  recommend the proposed buildings be supported on deep foundations borne within the dense soil  layer. In this report, we considered Tubex and auger‐cast piles, or equivalent, for this project.We  recommend a minimum diameter of 16 inches for Tubex piles and 18 inches for auger‐cast piles.    Tubex piles offer several advantages over conventional driven piles such as greater vertical and lateral  load capacity, limited vibration, limited noise, low overhead clearance requirements and small size and  mobility of the construction equipment. Auger‐cast piles also offer similar advantages. A brief  comparison of several other deep foundation types is tabulated in Table XI below.    TABLE XI  Deep Foundation Alternative Comparison  Factor  Tubex/  Fundex Auger‐Cast  Pre‐Stressed  Concrete Torque Down Driven Steel Beam  Noise Low Low High Low High  Vibration Low Low High Low High  Indicator Piles Not mandatory,  steel shell cut or  spliced as needed  Not mandatory, cut  or splice  reinforcement cage  as needed  Recommended Not mandatory,  steel shell cut or  spliced as needed  Not mandatory, cut  or splice beam as  needed  Load Testing Required unless  advanced to  bedrock or if loads  are light to  moderate  Required unless  advanced to  bedrock or if loads  are light to  moderate  Required unless  advanced to  bedrock or if loads  are light to  moderate  Required unless  advanced to  bedrock or if loads  are light to  moderate  Required unless  advanced to  bedrock or if loads  are light to  moderate    23  Steel and  Concrete QC  Field welds, post  installation exterior  grout cannot be  seen, concrete in  shell requires field  inspection/testing  of concrete  placement  Concrete (grout)  requires field  inspection/testing  of concrete  placement  Requires production  yard  inspection/testing  of concrete  placement  Field welds, no  exterior grout,  concrete in shell  requires field  inspection/testing  of concrete  placement  Field welds (if  needed for splicing)  Installation  Monitoring  Based on torque,  crowd readings,  advancement rates,  and grout return  Based on torque,  advancement rates,  and grout return  Based on refusal  based driving  criteria  Based on torque,  crowd readings, and  advancement rates  Based on refusal  based driving  criteria  Vertical  Capacity High capacity minus  down drag if any Low capacity minus  down drag if any High capacity minus  down drag if any High capacity minus  down drag if any High capacity minus  down drag, if any.  Lateral  Capacity  Depends on size Depends on size Depends on size Depends on size Depends on size  Disadvantages High cost.  Some cuttings  generated in post  grout stream.  Considerable  displacement of  spoils.  More than average  dependence on  quality of  workmanship.  Some displacement  of spoils from  predrilling.  Difficult to field  adjust length.  High cost. Susceptible to  corrosion.  Advantages Less noise and  vibration    Easily adapts to  varying depths to  bedrock in the field  without substantial  cutoff    Steel casing  provides  reinforcement on  the outside of pile,  minimizing  reinforcing steel  Less noise and  vibration    Can be less  expensive than  propriety methods  Corrosion resistance Less noise and  vibration    Easily adapts to  varying depths to  bedrock in the field  without substantial  cutoff    Steel casing  provides  reinforcement on  the outside of pile,  minimizing  reinforcing steel  Easy to splice    Small displacement  spoils    Able to penetrate  through light  obstacles    Can be less  expensive than  propriety methods    7.2.1 Tubex Piles    Tubex piles are a proprietary deep foundation system developed in the Netherlands and imported to the  United States. A Tubex pile consists of a steel pipe pile that is screwed into the ground with a conical  shaped drill tip 6 inches larger in diameter than the pipe shaft. Individual sections of pipe pile are  welded together as the pile is extended into the ground. Cement grout is pumped out through small  ports at the drill tip creating a cement ground shield around the circumference of the steel pipe pile. The  auger action and high‐pressure grout causes soil to displace away from the pile as it is installed. The final  diameter of the pile matches the diameter of the drill tip. The hollow pile is backfilled with 4,000 pounds  per square inch (psi) concrete upon reaching the desired tip elevation. The Tubex piles will derive  frictional resistance or adhesion between the cement grout shield and the adjacent soils.    The structural capacity of the Tubex pile is dependent on craftsmanship, strength of materials,  reinforcement design, applied loads at the pile top, pile top connection details, and drag loads    24  associated with negative skin friction due to liquefaction. The structural engineer should check the  structural performance of the Tubex pile, particularly the moments and shear loads developed under  lateral loading. In addition, consideration should be given to performing a pile load test program at the  Site to confirm the axial capacity of the piles.    Tubex piles offer several advantages over conventional driven piles such as greater vertical and lateral  load capacity, limited vibration, limited noise, low overhead clearance requirements and small size and  mobility of the construction equipment.    7.2.1.1 Tubex Pile Axial Capacity    We recommend that 16/22‐inch diameter, 3/8‐inch thick, Tubex pipe piles, or equivalent, be used on  the project. The steel pipe diameter is 16 inches and the grout shield diameter is 22 inches.    Vertical pile capacity was evaluated based on the computer program APILE v2019 (Ensoft, Inc.). Our  analysis of pile capacity includes static (long‐term) loading conditions and seismic loading conditions,  where capacity in the upper approximately 30 feet of soil is ignored due to the potential for liquefaction.  For post‐seismic (static conditions after an earthquake), a downdrag load due to liquefaction‐induced  settlement should be accounted for in the pile analysis. However, the downdrag load does not need to  be coupled with seismic forces, as the settlement typically occurs after earthquake shaking stops.    The ultimate axial capacity of a 16/22 Tubex pile installed from the existing ground surface for the  general soil profile is presented on Figure 5. The weight of the foundation is not included in the ultimate  resistance shown in these figures. The piles should extend to at least 50 to 60 feet into the dense to very  dense coarse alluvial soils (Colma Formation) to develop support from friction in the fill and native soils  as well as the end bearing in that layer.    Axial capacity is based on Federal Highway Administration (FHWA) procedures for design of Tubex pile.  For skin resistance calculations, this method uses the Nordlund method for granular soils and the  Tomlinson method for cohesive soils. The program also uses the Thurman variation of the Meyerhof  recommendations for calculation of tip resistance. For the cohesive soils, we estimated undrained shear  strength based on correlations with the tip resistance and laboratory tests. Skin resistance in the upper  5 feet of soil is neglected in our analyses to account for potential disturbance and seasonal moisture  changes.    For allowable static axial capacity in Tubex pile design, we recommend a factor of safety of 2.5 ultimate  axial resistance. For allowable uplift capacity, a factor of safety of 2.0 should be applied to the ultimate  uplift capacity. No reduction in axial capacity due to group action is required for piles spaced at least 3  diameters on center‐to‐center. We also estimated an unfactored dragload downdrag load of 250 kips  due to consolidation of the Young Bay Mud. This down drag load  for static condition and 40 kips for  seismic condition. These downdrag loads should be considered as a structural load but do not need to  be considered in the geotechnical capacity of the pile.    7.2.2 Auger‐Cast Piles    The proposed structures can also be supported on auger‐cast‐in‐place (ACIP) or auger‐cast piles. ACIP  piles are installed by drilling a continuous flight, hollow‐stem auger into ground to a specific depth in  one continuous process. At the same time the auger is withdrawn from the hole, sand/cement grout is    25  placed by pumping the concrete or grout mix through the hollow center of the auger pipe to the base of  the auger, eliminating the need for temporary casing or slurry. Reinforcement can be placed into the  hole filled with fluid concrete or ground immediately after withdrawal of the auger.    ACIP piles have become more commonly used within the Bay Area in recent years and have the  advantage of being able to be installed in low overhead areas where needed and have much lower  ground vibration and noise characteristics when compared to driven piles. One disadvantage is that the  piles are a non‐displacement pile that generates soil cuttings and grout as waste material that is off  hauled from the site.    7.2.2.1 ACIP Pile Axial Capacity    We recommend that a minimum of 18‐inch diameter ACIP piles be used on the project. The estimated  axial capacities are presented in the attached Figure 6. The piles should extend to at least 50 to 60 feet  into the dense to very dense coarse alluvial soils (Colma Formation) to develop support from friction in  the fill and native soils as well as the end bearing in that layer.    Axial capacity for ACIP piles was evaluated using the computer program SHAFT v2017 (Ensoft, Inc.)  based on the FHWA procedures for drilled shafts. This method uses Alpha‐ and Beta‐values to estimate  for skin resistances in cohesive and cohesionless soils, respectively. The end bearing resistance is  estimated based on soil strength and SPT‐N value at 60% efficiency near the tip of the pile for these  soils. Skin resistance in the upper 5 feet of soil is neglected in our analyses to account for potential  disturbance and seasonal moisture changes.    For allowable static axial capacity in ACIP pile design, we recommend a factor of safety of 2.5 be applied  to the ultimate axial capacity. For allowable uplift capacity, a factor of safety of 2.0 should be applied to  the ultimate uplift capacity. No reduction in axial capacity due to group action is required for piles  spaced at least 3 diameters on center‐to‐center. We also estimated an unfactored downdrag load of 140  kips due to consolidation of the Young Bay Mud for static condition and 30 kips for seismic condition.  This downdrag load should be considered as a structural load but not need to be considered in the  geotechnical capacity of the pile. Pile foundations should be designed to resist the appropriate load  combinations for downward and upward vertical loading, neglecting the potential vertical support  provided by pile caps or grade beams.    7.2.3 Lateral Resistance    Lateral loads, which may be imposed on the piles by wind or earthquake forces, can be resisted by  horizontal bearing support of soil adjacent to the piles. The lateral capacity of a pile depends on its  length, stiffness in the direction of loading, proximity to other piles, and degree of fixity at the head, as  well as on the engineering properties of the soils.    Structural details and loading conditions are not available to us yet. Our recommended parameters for  general soil profile at the Site for the design of lateral capacity are presented in Table XII, which includes  parameters that can be used in the LPILE program (Ensoft, Inc.). The contribution of the fill found within  the upper 7½ to 8½ feet of the soil profile should be neglected in the design. The values presented in the  table assume groundwater at the ground surface. The depths of each soil layer should be adjusted  accordingly based on the CPT and boring logs, or cross sections presented in Figures 3 and 4. If the piles    26  will be constructed in groups, a P‐multiplier maybe required to account for group effects, depending on  the pile layout geometry. Please contact us for further information if this information is required.    TABLE XII  Lateral Capacity Input Parameters for the General Soil Profile  Layer P‐y Model  Depth  (feet)  Effective Unit  Weight (pcf)  Friction  Angle  (degrees)  k  (pci)  Undrained  Cohesion  (psf) E50  Fill Sand (Reese) 0 ‐ 7½ 52.6 31 60 n/a n/a  Marsh Deposit Soft Clay  (Matlock)  7½ ‐ 22 47.6 n/a n/a 500 0.007  Alluvium3 Sand (Reese)1 22 ‐ 30 62.6 36 60 n/a n/a  Colma  Formation  Sand (Reese) 30 ‐ 65 62.6 40 125 n/a n/a  Old Bay Deposit Stiff Clay with Free  Water (Reese)  65 ‐ 85 47.6 n/a 1000 3000 0.005  Alluvium Sand (Reese) 85 ‐ 126½ 62.6 40 125 n/a n/a  Notes:  1) pcf = pounds per cubic foot  2) pci = pounds per cubic inch  3) For seismic condition, use “Liquefied Sand Hybrid Model” with an SPT Blow Count of 28 for this layer.   7.2.4 Pile Foundation Quality Control Testing    High strain dynamic testing should be performed, in general accordance with ASTM D4945, on the test  pile for the static axial compressive load test, on sacrificial indicator piles for each proposed pile  diameter, target tip elevation, and installation method, and on two other sacrificial indicator piles. The  indicator pile program should include the test piles and the reaction piles, as needed. The proposed  locations for the indicator piles should be reviewed by the geotechnical engineer. Testing should be  completed before the start of the production piles. Production pile testing should include static axial  tensile load testing on 2 percent of production piles and high strain dynamic testing on 5 percent of  production piles. Production piles should be tested to 200 percent of the design load for compressive  loading or 200 percent of the design load for uplift or tensile loading.    An optional pile load testing program may be implemented to refine the design of the pile foundations  and to evaluate the effectiveness of installation techniques and the potential contribution of tip  resistance to axial resistance. The pile load testing should include tests, performed by the foundation  contractor, to evaluate both axial tension and compression resistances on pre‐production indicator piles  and on production piles. One static axial tension load test should be performed, in general accordance  with ASTM D3689, for each proposed pile diameter, target tip elevation, and installation method on  sacrificial indicator piles. One static axial compressive load test should be performed, in general  accordance with ASTM D1143, on a sacrificial indicator pile.    Additional quality control testing of test and production piles using gamma‐gamma logging (Caltrans  Test 233) for evaluation of grout homogeneity, should also be considered. The project specifications and  quantity of these tests should be developed in consultation with the project structural engineer,  geotechnical engineer, general and pile installation contractors.      27  7.3 SLABS‐ON‐GRADE    Concrete slabs are anticipated to consist of floor slabs, loading docks, and exterior walkways. The floor  slabs can be supported on grade. The exposed subgrade soil should be moisture conditioned and  recompacted as discussed in the “Fill Placement and Compaction” section of this report.    7.3.1 Floor Slabs    The interior concrete floor slab thickness and reinforcement should be provided by the project  structural engineer. As a minimum, the floor slab should be directly underlain by at least a 6‐inch‐thick  layer of Class 2 aggregate base or a 6‐inch‐thick water vapor retarder system, as described below. The  soil subgrade beneath the interior floor slab system should be prepared and compacted, as described in  the section “Fill Placement and Compaction.” The subgrade should not be allowed to dry during  construction. If the previously compacted soil subgrade is disturbed during foundation and/or utility  excavation, the subgrade should be scarified, moisture‐conditioned, and rerolled to provide a firm,  unyielding surface prior to placement of the capillary break material or casting the concrete floor.    If moisture transmission through the slab is acceptable or if the slab is subject to vehicle loading such as  at the parking structure, the slab‐on‐grade floor may be placed over a 6‐inch‐thick layer of Caltrans Class  2 Aggregate Base that has been compacted to at least 95 percent relative compaction.    In other locations, to reduce water moisture transmission through the floor slab, we recommend  installing a capillary moisture break and a minimum 15‐mil‐thick Class C water vapor retarder beneath  the floor. Typically, finished spaces with slab‐on‐grade floors, such as offices, will utilize capillary  moisture breaks and vapor retarders to reduce the potential for water vapor transmission through the  floor, which can adversely impact flooring materials and carpeting.    A capillary moisture break consists of at least 4 inches of clean, free‐draining gravel or crushed rock,  overlain by a vapor retarder, and capped with 2 inches of clean sand. The vapor retarder should be  placed in general accordance with the requirements of ASTM E1643. These requirements include  overlapping seams by 6 inches, taping seams, and sealing penetrations in the vapor retarder. The  particle size of the gravel/crushed rock and sand should meet the gradation requirements presented in  Table XIII.    TABLE XIII  Gradation Requirements for Capillary Moisture Break  Sieve Size Percentage Passing Sieve  Gravel or Crushed Rock  1 inch 90‐100  3/4 inch 30‐100  1/2 inch 5‐25  3/8 inch 0‐6  Sand  No. 4 100  No. 200 0‐5    Concrete mixes with high water/cement (w/c) ratios will result in excess water in the concrete, which  increases the cure time and may result in excessive vapor transmission through the slab. Therefore,    28  concrete for the floor slab should have a low w/c ratio of less than 0.50. If approved by the project  structural engineer, the sand can be eliminated beneath the slabs‐on‐grade and the concrete can be  placed directly over the vapor retarder, provided the w/c ratio of the concrete does not exceed 0.45 and  water is not added in the field. If necessary, workability should be increased by adding plasticizers. In  addition, the slab should be properly cured.    Before the floor covering is placed, the contractor should check that the concrete surface and the  moisture emission levels (if emission testing is required) meet the manufacturer’s requirements.    7.3.2 Exterior Flatwork    Exterior flatwork may be supported on grade. We recommend that, as a minimum, exterior concrete  slabs and pedestrian walkways be designed using 4 inches of concrete. Typically, construction joints are  spaced at horizontal distances no greater than 30 times the concrete slab thickness. If there is a conflict  between the civil and geotechnical design recommendations for contraction joint spacing, Haley &  Aldrich defers to the civil engineer’s recommendations. Where concrete flatwork is to be exposed to  vehicle traffic, we recommend that the flatwork be supported on a minimum of 6 inches of Class 2  aggregate baserock. Recommendations for subgrade preparation and aggregate base compaction for  concrete slabs and walkways are the same as those we have described in the “Fill Placement and  Compaction” section.    7.4 SURFACE DRAINAGE    Site grading should provide surface drainage away from the proposed structures and concrete  slabs‐on‐grade to reduce the percolation of water into the underlying soil. Surface water should not be  allowed to collect adjacent to structures and along edges of concrete slabs or pavements. Grades should  be sloped away from the structures as required in the California Building Code (current edition). Surface  water should be directed away from exposed soil slopes. Rainwater on the roof of buildings should be  conveyed through gutters, downspouts and closed pipes which discharge directly into the site  stormwater collection system or pavement. If discharging onto the pavement, safety of pedestrian  traffic should be considered.    7.5 FLEXIBLE PAVEMENT DESIGN    The State of California Resistance (R)‐value method for flexible pavement design was used to develop  recommendations for pavement sections. The thickness of pavement depends on the R‐value of the  subgrade soil and the volume of traffic anticipated.    Based on the encountered soil type and R‐value test results, we recommend using a design soil subgrade  R‐value of 18 and relying on the subgrade preparation method discussed in the “Earthworks” section of  this report.    We assume that flexible pavement throughout the Site will be designed using traffic indexes (TI) ranging  from 4.5 to 9.0. Design sections for flexible pavement sections bearing directly over compacted native  soil (R‐value = 18), are presented in Table XIV.      29  TABLE XIV  Flexible Pavement Design (R‐Value = 18)  Traffic  Index  Asphalt  Concrete  (inches)  Class 2  Aggregate Base  (inches)  Total  (inches)  4.5 2.5 7.0 9.5  5.0 2.5 8.5 11.0  6.0 3.0 10.5 13.5  7.0 4.0 12.0 16.0  8.0 4.5 14.5 19.0  9.0 5.5 16.0 21.5    We recommend that the subgrade soil, over which the pavement sections are to be placed, be moisture  conditioned and compacted according to the recommendations in the “Fill Placement and Compaction”  section of this report. Subgrade preparation should extend a minimum of 2 feet laterally beyond the  back of curb or edge of pavement. Paved areas should be sloped and drainage gradients maintained to  carry all surface water to appropriate collection points. Surface water ponding should not be allowed  anywhere on the Site during or after construction. We recommend that the pavement section be  isolated from non‐developed areas and areas of intrusion of irrigation water from landscaped areas.  Concrete curbs should extend a minimum of 2 inches below the baserock and into the subgrade to  provide a barrier against drying of the subgrade soil, and a reduction of migration of landscape water  into the pavement section.    7.6 RIGID PAVEMENT DESIGN    Rigid pavement design was performed in conformance with the AASHTO 1993 design method, including  vehicle loads calibrated to a standard equivalent single axle load of 18,000 pounds and a maximum  tandem axle load of 32,000 pounds. The thickness of rigid pavement depends on the R‐value of the  subgrade soil and the volume of traffic anticipated. For this site, as stated in the “Flexible Pavement  Design” section, we assume a design R‐value of 18 for the existing subgrade. We assume that rigid  pavements throughout the Site will be designed using TI up to 10.0. Based on these design parameters,  we recommend using the pavement designs presented on Table XV.    TABLE XV  Rigid Pavement Design  Traffic  Index  Portland Cement  Concrete  (inches)  Class 2 Aggregate  Base1  (inches)  Total  (inches)  ≤7.0 6.0 6.0 12.0  7.0 – 9.0 8.5 6.0 14.5  9.0 – 10.0  10.0 6.0 16.0  Notes:  1) Class 2 Aggregate Base to be placed over the subgrade prepared per “Fill Placement and  Compaction.”     30  The modulus of rupture of the concrete should be at least 600 psi at 28 days and the unconfined  compressive strength of the concrete should be at least 3,500 psi at 28 days. Contraction joints should  be constructed at a 12.5‐foot spacing for the 6‐inch‐thick concrete pavement and 15‐foot spacing for the  7‐inch‐thick concrete pavement. Where the outer edge of a concrete pavement meets asphalt  pavement, the concrete slab should be thickened by 50 percent at a taper not to exceed a slope of 1 in  10. For better long‐term performance, consideration should be given to reinforcing the slab with a  minimum of No. 3 bars at 18‐inch spacing in both directions. If there is a conflict between the civil and  geotechnical design recommendations for contraction joint spacing or slab reinforcement, we defer to  the civil engineer’s recommendations. Recommendations for subgrade preparation and aggregate base  compaction for concrete pavements are provided in the “Fill Placement and Compaction” section of this  report.    7.7 TEMPORARY EXCAVATION SHORING    Temporary shoring walls will be required to support the vertical sides of the deep excavation.  The  shoring system should be designed to provide temporary lateral support for the excavation while  ensuring safety and stability of the buildings, utilities, and other infrastructure adjacent to the  excavation.  If temporary shoring will act as a groundwater cut‐off, embedment depth may be deeper  than what is needed for the support of excavation.  Final toe depths should be further reviewed and  selected by the design‐build shoring contractor.    We assume that a cement‐mix column cut‐off wall is the preferred method of shoring for this project  due to constraints from the adjacent public streets but is still conceptual at this time.  However, we have  included recommendations for a cement‐mix column cut‐off wall with both tiebacks and with internal  bracing for completeness.  The cut‐off wall will include steel members (presumably I‐ or W‐section  beams) to resist lateral earth pressures.    The following sections provide geotechnical engineering criteria for the design of the shoring system  described above, including lateral soil and water pressures and end bearing for the cut‐off wall shoring.   Recommendations for the shoring system rely on assumptions that are specific to the particular shoring  system as it is applied to this project; Haley & Aldrich should be consulted if alternative shoring systems  are proposed.    7.7.1 General Considerations    We recommend that the shoring be designed by a professional structural engineer registered in the  State of California.  We also recommend that we be given the opportunity to review the proposed  shoring design before construction.    This report is not intended to provide specific criteria for the contractor’s construction means and  methods.  It should be the responsibility of the shoring contractor to verify actual ground conditions at  the site and determine the construction means, methods, and procedures needed to install an  appropriate shoring system.    7.7.2 Lateral Earth Pressures    The design of the temporary shoring and dewatering system will require supplemental lateral support in  order to limit wall movements and protect adjacent improvements.  Supplemental lateral support may    31  be provided through an exterior system of tie‐back soil anchors and/or internal bracing consisting of  corner braces, cross‐lot braces, or rakers.  These supplemental lateral support systems can transfer  vertical compression and tension loads to the proposed shoring system.  The embedment of the shoring  wall must be sufficient to provide lateral stability for the shoring system, as well as vertical stability.   Vertical loads can be resisted by skin friction along the embedded portions of the wall (below the base  of the excavation) and by end bearing.    The typical design parameters for the shoring system designed to resist active and at‐rest earth pressure  conditions are presented on Figure 7.    It should be noted that some deformation is expected in all shoring systems during construction.  The  magnitude of movement is controlled by many factors, including the type of system used and the  contractor's skill in installing the shoring system.  For a typical shoring system designed for active earth  pressure conditions, we judge lateral movements will be within ordinarily accepted limits of up to about  0.002 to 0.004 times the height of the shoring system, which corresponds to about ½ to 1 inch for the  proposed excavation.  However, if the shoring system needs to be designed to greatly limit lateral  movements, then the shoring system should be designed for at‐rest earth pressures.  Survey points  should be established on the shoring, adjacent streets and sidewalks, and neighboring buildings to  monitor the movement of these features during and immediately after construction.    Settlement‐sensitive structures within the zone of deformation should be underpinned, or the shoring  system supporting the structure should be designed considering surcharge loading from the existing  building foundations.  Settlement‐sensitive utilities located adjacent to the proposed shoring walls  should be identified and acceptable settlement criteria confirmed with the utility owner.  If settlement‐ sensitive utilities are present, Haley & Aldrich should be consulted to evaluate the impact of the shoring  system.    We make the following recommendations regarding lateral earth pressures for the shoring system:   Compute the lateral earth pressures, hydrostatic water pressures, and uniform  construction/traffic surcharges for a system with multiple rows of tieback or interior bracing  support using apparent earth pressures given on Figure 7.  The lateral pressures presented on  Figure 7 are based on a level backslope behind the walls.    The shoring must be designed to carry the bending and shear stresses caused by the restrained soil,  groundwater, tiebacks, and external or internal supports, if applicable, such as the vertical load resulting  from down‐angle tieback anchors.  The stresses can be calculated from the apparent earth pressure  diagrams provided on Figure 7 with additional surcharge pressures as described previously.  Shoring  elements must be embedded deeply enough to resist these loads, provide a kickout resistance for the  portion of the wall below the lowest support, and provide groundwater cut‐off to prevent base heave.    We recommend that the following criteria be used to establish shoring elevations:   Vertical shoring elements may be designed with allowable end bearing of 7 ksf if extended  through Bay Mud.   Vertical shoring elements may be designed with allowable axial skin friction of 0.35 ksf below  the base of excavation if below the Bya Mud.  Neglect skin friction above the base of the  excavation and in Bay Mud.    32   Steel soldier pile sections should be embedded at least 10 feet below the base of excavation.   This embedment should consider an excavation depth that accounts for overexcavation  required for foundations, elevator pits, and installation of the dewatering system.   The shoring wall and steel piles should be designed for bending moments and shear imposed by  tieback loads and recommended earth pressures.   For design against kickout, compute the lateral resistance on the basis of the passive pressure  presented on Figure 7.   The shoring wall should have sufficient bond strength such that the loads from the steel soldier  piles can be transferred to the wall below the base of the excavation.    7.7.3 Shoring Installation    The above recommendations are based on proper installation of the shoring sections, as discussed  below.    Changes in the soil conditions relative to what we have assumed for our recommendations may cause  the shoring system to perform poorly.  Softer end bearing conditions combined with the vertical  component of the inclined tieback load may result in settlements that would cause partial destressing of  the tiebacks and excessive lateral movement of the shoring system.  We recommend a Haley & Aldrich  representative observe trenching and cut‐off wall installation, to determine if unexpected subsurface  conditions are encountered, so that construction methods can be adjusted accordingly, if necessary.    We make the following recommendations regarding shoring wall installation:   The contractor should be prepared to tremie concrete from the bottom of the shoring cut‐off  wall excavation to displace groundwater or drilling slurry used to maintain an open excavation.   Concrete, slurry, or soil‐cement samples should be collected and tested throughout installation  to test for uniformity of mixing and required compressive strength.   The contractor should be required to submit a plan describing how leaks in the system, such as  discontinuities in the wall and tieback penetrations will be prevented, or otherwise mitigated  and repaired.    7.7.4 Design and Construction of Tiebacks    Tieback anchors may be used for external lateral support of the shoring wall and embedded steel  beams.  We make the following recommendations concerning tieback anchor design:   Locate anchor portions of the tiebacks outside of the “no load” zone shown on Figure 7.   Use the allowable anchor pullout resistances presented on Figure 7.  These anchor design values  include a factor of safety of at least 1.5 for temporary anchors.  This factor of safety provides for  a reasonable additional load capacity should an unforeseen increase in unit soil load develop  because of irregularities that can occur during installation of the anchor.  It is the shoring  contractor’s responsibility to achieve the required tieback loads using the necessary anchor size  and their means and methods.   Locate anchors no closer to each other than three anchor diameters.    33   Pump structural concrete into the anchor zone either using the auger as it is withdrawn, or from  a grout hose placed at the bottom of the anchor.   Install a bond breaker such as plastic sheathing or a PVC pipe around the tie rods within the “no  load” zone.   Grout and backfill drilled tieback installations immediately after drilling.  Leave no holes open  overnight.  This will help prevent possible collapse of the holes, loss of ground, and surface  subsidence.   The shoring designer should particularly note the presence of existing facilities adjacent to the  project site, including buried utilities and foundations, as these may affect the location and the  length of the anchor holes.    We recommend that selection of the materials and the installation technique be left to the shoring  contractor.  The shoring contractor shall be made contractually responsible for the design of the tieback  anchors, as tieback capacity is largely a function of the means and methods of installation.  The selected  tieback anchor installation method must be subject to field verification with verification testing and  proof testing.    The tieback anchor testing program should include verification testing of tiebacks at selected locations,  and proof testing of all production tiebacks.  We recommend testing tiebacks in general accordance with  the recommendations in the publication “Recommendations for Prestressed Rock and Soil Anchors” by  the Post Tensioning Institute (PTI, 2014) and the recommendations in the following sections.    7.7.4.1 Tieback Anchor Verification Tests    We recommend a minimum of two verification tests for each installation method and soil type before  installation of production anchors to validate the design pullout value.  Haley & Aldrich should select the  testing locations with input from the shoring subcontractor.  Haley & Aldrich or the shoring designer  may require additional verification tests when creep susceptibility is suspected, or when varying ground  conditions are encountered.    Tiebacks for verification tests should be installed using the same methods, personnel, material, and  equipment as are used for the production tiebacks.  Deviations may require additional verification  testing as determined by the engineer.    Verification tests load the tieback to 200 percent of the design load (DL) and include a 60‐minute creep  test at 150 percent of the DL.  The tieback design loads should be clearly shown on the shoring  plans/drawings.  The tieback load should not exceed 80 percent of the steel’s ultimate tensile strength.   Verification test tiebacks should be incrementally loaded and unloaded using the schedule in Table XVI,  and as recommended below.   The alignment load (AL) should be the minimum required to align the testing assembly and  should be less than 5 percent of the DL.  The dial gauge should be zeroed after the alignment  load has stabilized.   The verification test will measure anchor stress and displacement incrementally to values of unit  skin friction (adhesion) to 200 percent of the design adhesion.    34   The soldier piles, vertical elements, and/or anchor tendon may require extra reinforcement to  permit stressing to 2.0DL as required for the performance test.   Perform tests without backfill in front of the bonded anchor zone, if the hole will remain open,  to avoid any contributory resistance by the backfill.  If the hole will not remain open during  testing, provide a bond breaker on the no‐load zone specified on the plans.   Load the anchor in increments of 0.25DL and unload to the AL before incrementally loading to  the next load increment (e.g., AL, 0.25DL, AL; 0.25DL, 0.50DL, AL; 0.25DL, 0.50DL, 0.75DL, AL;  etc.).  Ensure that deflection readings stabilize for intermediate load increments (e.g., 0.25 DL  and 0.50 DL) before increasing the load to the next increment (e.g., 0.75 DL).   Load levels during hold intervals should be held constant to within 50 pounds per square inch  (psi), and deflection measurements shall be made to a minimum accuracy of 0.01 inch.   Obtain and record deflection measurements for loading at intervals of 1, 2, 3, 5, 7, and 10  minutes for 10‐minute hold interval.   The creep test at 1.5DL should be performed by and recording deflections at 1, 2, 3, 5, 7, 10, 20,  30, 50, and 60 minutes.    TABLE XVI  Tieback Verification Test Incremental Load and Hold Time  Load Level Hold Time  AL Until stable  0.25DL 10 min  0.5DL 10 min  0.75DL 10 min  1.0DL 10 min  1.25DL 10 min  1.5DL 60 min  1.75DL 10 min  2.0DL 10 min    The acceptance criteria for a verification test are as follows:   Exhibits a linear or near‐linear relationship between unit stress and movement over the percent  stress range during loading from AL to 2.0DL.   Holds the maximum test unit stress at 1.5DL without noticeable creep.  Noticeable creep is  defined as a rate of movement of more than 0.04 inch between the 1‐ and 10‐minute readings,  or more than 0.08 inches between the 6‐ and 60‐minute readings.  If the reading does not  stabilize to 0.08 inch or less per log cycle of time, the test shall be considered as failing the creep  criteria.   Satisfies the apparent free tendon length criteria.  Apparent free length criteria are as follows:  – Minimum apparent free length, based on the measured elastic and residual movement,  should be greater than 80 percent of the designed free length plus the jack length; and    35  – Maximum apparent free length, based on the measured elastic and residual movement,  should be less than 100 percent of the designed free length plus 50 percent of the bond  length plus the jack length.   The anchor does not pull out under repeated loading or at 2.0DL.    7.7.4.2 Proof Tests    Proof tests load all the production tiebacks to 1.33DL and include a 10‐minute hold time at 1.33DL.  The  purpose of a proof test is to quickly and economically determine the acceptability of each anchor for  adequate performance after lock‐off at DL.  The tieback DLs should be on the shoring drawings.  The  tieback load should not exceed 80 percent of the steel’s ultimate tensile strength.  Proof tests should be  incrementally loaded and unloaded using the schedule in Table XVII – Tieback Proof Test Schedule.    TABLE XVII  Tieback Proof Test Schedule  Load Level Hold Time  AL Until stable  0.25DL 1 min  0.5DL 1 min  0.75DL 1 min  1.0DL 1 min  1.33DL 10 min    The AL should be the minimum load required to align the testing assembly and should be less than  5 percent of the design load.  The dial gauge should be zeroed after the AL has stabilized.    The load should be held constant to within 50 psi and deflections recorded at 1, 2, 3, 5, 6, and  10 minutes.  If the tieback deflection between 1 and 10 minutes at 1.33DL exceeds 0.04 inches, the load  should be held for an additional 50 minutes and deflections recorded at 20, 30, 50, and 60 minutes.    The acceptance criteria for a proof test are:   The creep rate at 1.33DL is less than 0.04 inches between 1 and 10 minutes or less than  0.08 inches between 6 and 60 minutes and the creep rate is linear or decreasing during the  creep test;   Satisfies the apparent free tendon length criteria as described above for verification test; and   The anchor does not show pull out failure or tendency to failure during loading.    7.7.4.3 Shoring Monitoring    A shoring monitoring program provides early warning if the shoring does not perform as expected (e.g.,  excessive movement or impacts to surrounding nearby structures and utilities).  The monitoring  program should include a preconstruction survey of existing conditions, periodic surveys during  construction, and a post‐construction survey.      36  The contractor and the shoring subcontractor should be familiar with the existing site conditions  including surrounding nearby structures and utilities.  They should be allowed to review the inspection  data gathered by the owner and may also choose to complete a survey on their own.  The contract  should clearly define the responsibilities of the owner, contractor, and shoring contractor in making  inspections, reviewing data, and repairing possible damage.    Preconstruction Survey:  A preconstruction survey documents the condition of existing streets, utilities,  and buildings.  The survey should include video and/or photographic documentation.  The size and  location of existing cracks in streets and buildings should receive special attention and may be  monitored with a crack gauge.    Construction Survey:  We recommend including adjacent building surveys and optical surveys in the  shoring monitoring program during construction.  All monitoring data should be submitted to Haley &  Aldrich for review.  The data will be included in our weekly field transmittals to the project team and the  City during construction.  Details of our expectations for shoring monitoring are included below.    Adjacent Building Surveys:  We recommend surveying adjacent buildings before, during, and after  construction.  The pre‐construction survey will establish the baseline of existing conditions (e.g.,  identifying the size and locations of any cracks).  The surveys should consist of a videotape and/or  photographs of the interior and exterior of adjacent buildings and detailed mapping of all cracks.  Any  existing cracks could be monitored with a crack gauge.    Optical Surveying:  We recommend optical surveys of horizontal and vertical movements of (1) the  surface of the adjacent streets, (2) buildings on and adjacent to the site, and (3) the shoring system  itself.  The contractor, in coordination with the geotechnical engineer, should establish two reference  lines adjacent to the excavation at horizontal distances back from the excavation face of about 1/3 H  and H, where H is the final excavation height.  Typically, these lines will be established near the curb line  and across the street from the excavation face.  The points on the adjacent buildings can be set either at  the base, or on the roof, or both.  Shoring system monitoring should include measuring vertical and  horizontal movement at the top of every other soldier pile at the minimum.  Shoring monitoring should  also include geotechnical instrumentation (i.e., inclinometers) on each shoring wall.    The measuring system for the shoring monitoring should have an accuracy of at least 0.01 foot.  All  reference points on the ground surface should be installed and read before excavation begins.  The  frequency of readings will depend on the results of previous readings and the rate of construction.  At a  minimum, readings on the external points should be taken twice a week through construction until  below‐grade structural elements such as floors, decks, and columns are completed, or as specified by  the structural engineer or shoring designer.  Readings on the top of soldier piles and the face of existing  buildings on or adjacent to the property should be taken at least twice a week during this time.  We  recommend that the owner hire an independent surveyor to record the data at least once per week, and  that surveyor or contractor take the other reading.  All monitoring data should be submitted to Haley &  Aldrich for review.    Inclinometers:  Inclinometers are typically used to monitor lateral earth movement below the ground  surface where concerns about deflect need to be considered such as for abutters or public  infrastructure.  This device consists of a hollow casing placed in a borehole that is typically placed behind  the shoring wall or on the backside of a soldier pile at selected locations around the excavation.   Inclinometers are monitored regularly during construction.  An instrument is lowered down the casing    37  to measure casing deflections at discrete elevations for the entire profile of the casing.  Inclinometer  casings should extend below the base of the excavation so that the bottom is fixed in soil that will not  deform due to the shoring system, typically at least about 15 feet below the lowest point of excavation.    Based on the soils, setting, and depth expected for this project, we expect that four inclinometers will be  needed.      7.8 RETAINING WALLS    Retaining walls are anticipated for the parking structure ramp between the lowest floor level up to the  next level.  Basement retaining walls will also be needed for the one to two levels of below grade  parking.  Retaining walls should be designed to resist both static lateral earth pressures, lateral  pressures caused by seismic loading, and additional surcharge pressures associated with vehicular traffic  (if appropriate). Our recommended soil parameters for the design of retaining walls are provided in  Table XVII. Hydrostatic pressure of 62.4 psf was applied to at‐rest and active conditions below ground  surface below the groundwater table.    TABLE XVIII  Recommended Soil Parameters for Retaining Wall  Depth below  Surface (feet) Soil Description  Equivalent Fluid Pressure (pcf)  At‐Rest K0 Active Ka Passive Kp  7½ ‐ 8½ Fill (GM, GC, SM, SC) 60 40 360  8½ ‐ 41 Marsh Deposit (CL, CH) 65 45 270  41 ‐ 50 Alluvium (SP‐SM, SC, SM) 55 35 440  Below the Groundwater Table  7½ ‐ 8½ Fill (GM, GC, SM, SC) 90 80 235  8½ ‐ 41 Marsh Deposit (CL, CH) 95 85 190  41 ‐ 50 Alluvium (SP‐SM, SC, SM) 90 80 275     1) pcf = pounds per cubic foot   We recommend that the retaining walls be designed for the more critical of either:   An at‐rest equivalent fluid weight (triangular distribution), plus a traffic surcharge as a uniform  (rectangular distribution) lateral pressure of 100 psf applied to the entire vertical face of the  retaining wall, where vehicular parking, streets and/or driveways are located within a horizontal  distance of H, where H is the height of the adjacent retaining wall in feet; or   An active equivalent fluid weight (triangular distribution), plus a uniform seismic increment  (rectangular distribution) of 15 times the height of the wall in psf, where the height is in feet.    The permanent retaining walls within the buildings should be supported on deep foundations and  designed to resist lateral loads, as described in the “Deep Foundations” section of this report. The  location of axillary walls will need to be reviewed for appropriate foundation consideration.    The above lateral design pressures are based on fully drained walls. Even though the retaining walls will  be above the groundwater table, water can still accumulate behind the walls from other sources, such  as rainfall, irrigation, and broken water lines. Prefabricated drainage material (such as Miradrain® or an    38  approved alternate) may be used behind below‐grade and retaining walls. Prefabricated drainage  material should be installed in accordance with the manufacturer's recommendations.    As an alternative to prefabricated drainage material, a drain rock layer may be used. The drain rock layer  should 1 to 2 feet thick and extend to within 1 foot of the ground surface. Four‐inch diameter  perforated plastic pipe should be installed (with the perforations facing down) along the base of the  walls on a 4‐inch‐thick bed of drain rock. The pipe should be sloped to drain by gravity to a sump or  other drainage facility. Weep holes may also be used if water seepage is permissible in the structure.  The weep holes should be a minimum of 3 inches in diameter located at no more than 10 feet apart, and  a screen placed at the back of the holes if drain rock is used.    Drain rock should conform to Caltrans Class 2 permeable material. Alternatively, locally available, clean,  ½‐ to ¾‐inch maximum size crushed rock or gravel could be used, provided it is encapsulated in a non‐ woven geotextile filter fabric, such as Mirafi® 140N or an approved alternative.    Although not likely, even with the back‐drain system, localized wet spots may occur in the walls. If this is  undesirable, then the wall should be waterproofed.    7.9 CORROSION POTENTIAL    Haley & Aldrich performed corrosivity testing on two samples collected in the upper 5 feet within  borings HA‐1, ‐2, ‐3 and ‐5. Based on resistivity measurements and previous data, we conclude the soils  are considered “moderately corrosive to corrosive” to buried iron, steel, cast iron, ductile iron,  galvanized steel and dielectric coated steel or iron. Where these materials are used on‐site, they should  be properly protected against corrosion. All buried metallic pressure piping, such as ductile iron  firewater pipelines, should be protected against corrosion. The tested samples indicate that on‐site soils  do not pose a hazard to reinforced concrete structures and cement mortar‐coated steel. A summary of  corrosivity analysis results is provided in Table XIX.    TABLE XIX  Corrosivity Analysis Results  Sample No. pH  Min. Resistivity  (ohms‐cm)  Chloride  (mg/kg)  Sulfate  (mg/kg)  HA‐1 and HA‐2 7.4 1,100 82 29  HA‐3 and HA‐5 7.6 2,800 N.D. 23  Notes:  1) mg/kg = milligrams per kilogram       39  7.10 STORMWATER INFILTRATION    Due to the anticipated high groundwater table, boring infiltration testing was not performed.  Based on  our interpretation of the subsurface conditions, the site will not naturally infiltrate given the high  groundwater table.    If stormwater infiltration features are proposed at this site, we recommend that supplemental in situ  infiltration testing be performed at the exact locations of these features after site grading has been  completed to confirm that grading activities have not affected the long‐term infiltration rate of the  underlying soils. Supplemental testing may include additional boring infiltration tests, double ring  infiltrometer testing, or reduced‐scale pit tests.     40    8. Supplemental Geotechnical Services      The final project plans and specifications should be reviewed by Haley & Aldrich prior to construction to  check that they are in general conformance with the intent of our recommendations. During  construction, we should observe and document the installation of foundations, observe the condition  and test the compaction of any fill placed at the Site, and perform supplemental percolation testing at  bioretention basins. These observations will allow us to check that the contractor’s work conforms to  the geotechnical aspects of the plans and specifications and ensure that the foundation system and  paved areas are constructed in accordance with our design recommendations.           41  9. Limitations      This report has been prepared for specific application to the proposed construction as understood at  this time. In the event that changes in the nature, design, or location of the project are planned, the  conclusions and recommendations contained in this report should not be considered valid, unless the  changes are reviewed by Haley & Aldrich and the conclusions of this report modified or verified in  writing.    The geotechnical analyses and recommendations are based, in part, upon the data obtained from the  referenced subsurface exploration. The nature and extent of variations between explorations may not  become evident until construction. If variations appear at that time, it may be necessary to re‐evaluate  the recommendations of this report.    This report is prepared for the exclusive use of US Terminal Court Owner, LLC, and their subconsultants  in pursuit of the proposed development in South San Francisco, California. There are no intended  beneficiaries other than US Terminal Court Owner, LLC and their subconsultants. Haley & Aldrich shall  owe no duty whatsoever to any other person or entity on account of the Agreement or the report. Use  of this report by any person or entity other than US Terminal Court Owner, LLC, and their subconsultants  for any purpose whatsoever is expressly forbidden unless such other person or entity obtains written  authorization from US Terminal Court Owner, LLC and Haley & Aldrich. Use of this report by such other  person or entity without the written authorization of US Terminal Court Owner, LLC and Haley & Aldrich  shall be at such other person’s or entity’s sole risk and shall be without legal exposure or liability to  Haley & Aldrich.           42  References      1. American Association of State Highway and Transportation Officials (AASHTO), 1993. Design of  Pavement Structures. 1993.  2. American Society of Civil Engineers (ASCE), 2017. Minimum design loads and associated criteria for  buildings and other structures: ASCE/SEI 7‐16.  3. ASTM International (ASTM), 2007. "ASTM D1143 Standard Test Method for Deep Foundations Under  Static Axial Compressive Load."  4. ASTM, 2007. "ASTM D3689 Standard Test Methods for Deep Foundations Under Static Axial Tensile  Load."  5. ASTM, 2008. "ASTM D4945 Standard Test Method for High‐Strain Dynamic Testing of Deep  Foundations."  6. ASTM, 2011. “ASTM E1643 Standard Practice for Selection, Design, Installation, and Inspection of  Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs,”  Reapproved 2017.  7. ASTM, 2012. ASTM D 1557 ‐ Standard Test Methods for Laboratory Compaction Characteristics of  Soil Using Modified Effort (56,000 ft‐lbf/ft3 (2,700 kN‐m/m3)).  8. Bonilla, M.G., 1998. Preliminary Geologic Map of the San Francisco South 7.5‐Minute Quadrangle  and Part of the Hunters Point 7.5‐Minute Quadrangle, San Francisco Bay Area, California. Open‐File  Report 98‐354, 1998.  9. Boulanger, R.W. and Idriss, I.M., 2014. CPT and SPT Based Liquefaction Triggering Procedures.  Report No. UCD/CGM‐14/01.  10. California Building Standards Commission, 2019. California Code of Regulations. Title 24, Volume 2.  11. California Department of Conservation, 2021. Earthquake Zone of Required Investigation. Website:  <https://maps.conservation.ca.gov/>, accessed 4 April 2022.  12. California Geological Survey (CGS), 2021. Seismic Hazard Report for the San Francisco South 7.5‐ Minute Quadrangle, San Mateo County, California. Seismic Hazard Zone Report 133, 2021.  13. Caltrans, 2000. "Caltrans Test 223 ‐ Method of Test for Surface Moisture in Concrete Aggregates by  the Displacement Method (Field Method)"; Published by the Department of Transportation.  14. Idriss, I.M. and Boulanger, R.W., 2008. Soil Liquefaction during Earthquake. EERI Publication,  Monograph MNO‐12, Earthquake Engineering Research Institute, Oakland.  15. Ishihara, K. ,1985. “Stability of Natural Deposits During Earthquakes,” Proceedings, 11th  International Conference on Soil Mechanics and Foundation Engineering, San Francisco. Vol 1, p  321‐376.    43  16. Robertson, P.K., Cabal, K.I., 2010. Guide to Cone Penetration Testing for Geotechnical Engineering,  4th Edition, July.  17. Rockridge Geotechnical, Inc., 2021, “Preliminary Geotechnical Investigation, Proposed Mixed‐Use  Development, 101 Terminal Court, South San Francisco, California,” Project No. 20‐1954, dated 12  January 2021.  18. State of California, 2021. Tsunami Hazard Area Map, San Mateo County. Produced by the California  Geological Survey and the California Governor’s Office of Emergency Services, 23 March 2021.  19. Toppozada, T. R., and Borchardt, G., 1998. Re‐evaluation of the 1836 ‘‘Hayward fault’’ and the 1838  San Andreas earthquakes. Bulletin of the Seismological Society of America, 88, 140 – 159.  20. United States Geological Survey (USGS), 2021. Quaternary Fault and Fold Database of the United  States. Website <https://www.usgs.gov/programs/earthquake‐hazards/faults>, accessed 4 April  2022.  21. USGS, 2021. Unified Hazard Tool. Website <https://earthquake.usgs.gov/hazards/interactive/>,  accessed 4 April 2022.  22. Working Group on California Earthquake Probabilities (WGCEP), 2015. Uniform California  Earthquake Rupture Forecast (Version 3). <http://www.wgcep.org/UCERF3>  23. Zhang G., et. al., 2004. “Estimating Liquefaction‐Induced Lateral Displacements using the Standard  Penetration Test or Cone Penetration Test,” American Society of Civil Engineers, Journal of  Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 8, 2004.          FIGURES SITE 122°24'0"W122°25'0"W122°26'0"W 37°39'0"N 37°38'0"N GIS FILE PATH: \\haleyaldrich.com\share\CF\Projects\0204962\GIS\Maps\2022_04\204962_000_0001_PROJECT_LOCUS_101_TERMINAL_COURT.mxd ― USER: hwachholz ― LAST SAVED: 3/25/2022 6:34:44 PMMAP SOURCE: ESRISITE COORDINATES: 37°38'38"N, 122°24'28"W 101 TERMINAL COURTSOUTH SAN FRANCISCO, CALIFORNIA PROJECT LOCUS FIGURE 1APPROXIMATE SCALE: 1 IN = 2000 FTAPRIL 2022 CA !?¤!?¤!?¤!?¤!?¤@A @A @A @A @A !? !? !? !? BAYSHORE FREEWAY (HWY 101)SAN BRUNO CANALSAN MATEO AVENUE A A' B B' SCPT-2 SCPT-1 CPT-2 CPT-3 CPT-4 HA-1 HA-2 HA-3 HA-4 HA-5 CPT-1/HA-1 CPT-2/HA-2 CPT-3/HA-3 CPT-4/HA-4 NOTES 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE. 2. ASSESSOR PARCEL DATA SOURCE: SAN MATEO COUNTY GIS 3. AERIAL IMAGERY SOURCE: NEARMAP, 29 SEPTEMBER 2021 101 TERMINAL COURTSOUTH SAN FRANCISCO, CALIFORNIA SITE PLAN FIGURE 2SCALE: AS SHOWNAPRIL 2022 LEGEND @A SOIL BORING !?¤CONE PENETRATION TEST !?CONE PENETRATION TEST AND HAND-AUGER BORINGS,ROCKRIDGE GEOTECHNICAL, INC. (2020) CROSS SECTION SITE BOUNDARY GIS FILE PATH: \\haleyaldrich.com\share\CF\Projects\0204962\GIS\Maps\2022_04\204962_000_0002_SITE_PLAN_101_TERMINAL_COURT.mxd ― USER: hwachholz ― LAST SAVED: 4/18/2022 10:32:58 PM0 150 300 SCALE IN FEET EL. IN FEET (NAVD88)EL. IN FEET (NAVD88)FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS ALLUVIUM FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS ALLUVIUM FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS ALLUVIUM FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS CPT-2 5.6' EL. 10.5 HA-1 1.7' EL. 10.9 HA-2 5.1' EL. 10.6 HA-4 46.1' EL. 8.3 CPT-3(R)/HA-3(R) 4.4' EL. 10.6 \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\CAD\FIGURES\0204962_0004_CROSS_SECTIONS_STRATA_V2.DWGOSLIVNYAK00034/18/2022 12:04 PMSheet:Printed:Saved by:FIGURE 3 101 TERMINAL COURT SOUTH SAN FRANCISCO, CALIFORNIA CROSS SECTION A-A' SCALE: AS SHOWN APRIL 2022 0 0 HORIZ. VERT. SCALE IN FEET 0 0 HORIZ. VERT. 60 120 180 240 12 24 36 48 LEGEND FILL MARSH DEPOSIT (SOFT TO MEDIUM STIFF LEAN CLAY) ALLUVIUM (VERY LOOSE TO MEDIUM DENSE SILTY SAND) COLMA FORMATION (INTERBEDDED MEDIUM DENSE TO VERY DENSE CLAYEY SAND AND SILTY SAND, AND MEDIUM STIFF SANDY CLAY) OLD BAY DEPOSIT (STIFF TO HARD FAT CLAY) ALLUVIUM (DENSE TO VERY DENSE SAND AND SILTY SAND, AND VERY STIFF TO HARD CLAY) STRATA CONTACT LINE EL. IN FEET (NAVD88)EL. IN FEET (NAVD88)FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS ALLUVIUM FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS ALLUVIUM FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS FILL MARSH DEPOSIT ALLUVIUM COLMA FORMATION OLD BAY DEPOSITS CPT-3 -36.8' EL. 10.9 CPT-4 -12.7' EL. 10.9 HA-4 -12.2' EL. 8.3 HA-5 -27.1' EL. 10.9 CPT-1(R)/HA-1(R) -6.1' EL. 9.9 CPT-4(R)/HA-4(R) -10.2' EL. 10.9 \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\CAD\FIGURES\0204962_0004_CROSS_SECTIONS_STRATA_V2.DWGOSLIVNYAK00044/18/2022 12:04 PMSheet:Printed:Saved by:FIGURE 4 101 TERMINAL COURT SOUTH SAN FRANCISCO, CALIFORNIA CROSS SECTION B-B' SCALE: AS SHOWN APRIL 2022 0 0 HORIZ. VERT. SCALE IN FEET 0 0 HORIZ. VERT. 60 120 180 240 12 24 36 48 LEGEND FILL MARSH DEPOSIT (SOFT TO MEDIUM STIFF LEAN CLAY) ALLUVIUM (VERY LOOSE TO MEDIUM DENSE SILTY SAND) COLMA FORMATION (INTERBEDDED MEDIUM DENSE TO VERY DENSE CLAYEY SAND AND SILTY SAND, AND MEDIUM STIFF SANDY CLAY) OLD BAY DEPOSIT (STIFF TO HARD FAT CLAY) ALLUVIUM (DENSE TO VERY DENSE SAND AND SILTY SAND, AND VERY STIFF TO HARD CLAY) STRATA CONTACT LINE 101 TERMINAL CT SOUTH SAN FRANCISCO, CA 16/22" TUBEX PILES AXIAL RESISTANCE CHARTS 18 April 2022 FIGURE 5 \\haleyaldrich.com\share\CF\Projects\0204962\Project_Data\Calculations\Pile Analysis\[101 Terminal Ct-template Tubex_0418.xlsx]Template 6 Notes: 1) The net weight of the pile should be treated as a load applied to the top of the pile in compression. This load is not accounted for in these charts. This weight may be considered as additional resistance in uplift. 2) A recommended factor of safety of 2.5 should be applied to the ultimate compressive resistance shown above. For uplift considerations, a factor of safety of 3.0 should be applied to the side resistance shown above. 3) An unfactored downdrag of 275 kips was calculated and should be considered as a structural load. This load does not need to be considered when calculating the geotechnical capacity of the pile. Notes: 1) The net weight of the pile should be treated as a load applied to the top of the pile in compression. This load is not accounted for in these charts. This weight may be considered as additional resistance in uplift. 2) A recommended factor of safety of 2.0 should be applied to the ultimate resistance shown above. For uplift considerations, the factor of safety of 2.0 should be applied to the side resistance shown above. 3) An unfactored seismic-induced downdrag of 40 kips was calculated and should be considered as a structural seismic load. This load does not need to be considered when calculating the geotechnical capacity of the pile. 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 1200 1400 Depth (ft)Axial Capacity (kips) ULTIMATE PILE RESISTANCES - STATIC CONDITION Uplift Compression 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 1200 1400 Depth (ft)Axial Capacity (kips) ULTIMATE PILE RESISTANCES - SEISMIC CONDITION Uplift Compression 101 TERMINAL CT SOUTH SAN FRANCISCO, CA 18" AUGER CAST PILES AXIAL RESISTANCE CHARTS 18 April 2022 FIGURE 6 \\haleyaldrich.com\share\CF\Projects\0204962\Project_Data\Calculations\Pile Analysis\[101 Terminal Ct-template ACIP_0418.xlsx]Template 6 Notes: 1) The net weight of the pile should be treated as a load applied to the top of the pile in compression. This load is not accounted for in these charts. This weight may be considered as additional resistance in uplift. 2) A recommended factor of safety of 2.5 should be applied to the ultimate compressive resistance shown above. For uplift considerations, a factor of safety of 3.0 should be applied to the side resistance shown above. 3) An unfactored downdrag of 140 kips was calculated and should be considered as a structural load. This load does not need to be considered when calculating the geotechnical capacity of the pile. Notes: 1) The net weight of the pile should be treated as a load applied to the top of the pile in compression. This load is not accounted for in these charts. This weight may be considered as additional resistance in uplift. 2) A recommended factor of safety of 2.0 should be applied to the ultimate resistance shown above. For uplift considerations, the factor of safety of 2.0 should be applied to the side resistance shown above. 3) An unfactored seismic-induced downdrag of 30 kips was calculated and should be considered as a structural seismic load. This load does not need to be considered when calculating the geotechnical capacity of the pile. 0 10 20 30 40 50 60 70 80 90 100 110 0 200 400 600 800 1000 Depth (ft)Axial Capacity (kips) ULTIMATE PILE RESISTANCES - STATIC CONDITION Uplift Compression 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 Depth (ft)Axial Capacity (kips) ULTIMATE PILE RESISTANCES - SEISMIC CONDITION Uplift Compression GROUND SURFACE APPROXIMATE ELEVATION = VARIES 1 FT 10 FT PRESSURE DUE TO VEHICLE SURCHARGE ALONG STREETS (HEAVY EQUIPMENT SHOULD COME NO CLOSER THAN 5 FEET TO FACE OF EXCAVATION) A psf H = 12 TO 25 FT 62.4 pcf 1 DIFFERENTIAL WATER PRESSURE PASSIVE PRESSURE 190 pcf 1 GROUNDWATER TABLE (SEE NOTE 5) D BOTTOM OF EXCAVATION BOTTOM OF EXCAVATION 0.25H 60° BOND LENGTH (15-FT MIN.) STRESSING LENGTH (10-FT MIN. FOR BARS, 15-FT MIN. FOR STRANDS) BOND BETWEEN ANCHOR AND SOIL IS CONSIDERED EFFECTIVE ONLY TO THE RIGHT OF DASHED LINE GROUND SURFACE APPROXIMATE ELEVATION = VARIES H TIEBACK H1 NO LOAD ZONEA + 22D 0.25H A 100 psf (D-2)/2 1 40 pcf ACTIVE 60 pcf AT REST 2'990 pcf NOTES 1. THESE SHORING PRESSURES ARE APPLICABLE TO SECANT PILE, CSM, SLURRY WALL, AND SOIL-CEMENT MIXED WALLS WITHIN AN EXCAVATION HEIGHT OF UP TO 30 FEET. 2. PASSIVE PRESSURE DEPENDS ON DEPTH TO GROUNDWATER WITHIN EXCAVATION. 3. PASSIVE PRESSURE VALUES INCLUDE A FACTOR OF SAFETY OF 1.5. 4. ASSUMES SHORING WILL BE BRACED OR TIED BACK. 5. TO REDUCE THE POTENTIAL FOR A BLOWOUT, THE HYDRAULIC HEAD SHOULD BE LOWERED AT LEAST 3 FEET BELOW THE BOTTOM OF THE EXCAVATION (OR DEEPER IF REQUIRED FOR LATERAL STABILITY). 6. ALL DIMENSIONS IN FEET UNLESS NOTED OTHERWISE 7. IGNORE THE UPPER 2 FEET OF PASSIVE RESISTANCE. 8. USE AN TIEBACK ADHESION OF 1000 PSF. THIS VALUE INCLUDES A FACTOR OF SAFETY OF 1.5.\\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0203652\CAD\FIGURES\0203652_000_FIG 3_FIG 5_TEMP EARTH PRESS EXCV.DWGKVARIFIG 53/17/2022 9:37 AM Sheet:Printed:FIGURE 7 TEMPORARY LATERAL EARTH PRESSURES FOR EXCAVATION SCALE: NTS APRIL 2022 CONDITION A (psf) BELOW WATER TABLE ACTIVE 22H AT-REST 31H     APPENDIX A Boring Logs IDENTIFICATION AND DESCRIPTION OF SUBSURFACE MATERIALS SOIL SUPPLEMENTAL SOIL TERMINOLOGY: - 0 to 1/16 in. thick (cohesive) - 0 to 1/16 in. thick (granular) - 1/16 to 1/2 in. thick - 1/2 to 12 in. thick - > 12 in. thick - Small, erratic deposit less than 12 in. size - Lenticular deposit larger than a pocket - One or less per 12 in. of thickness - More than one per 12 in. of thickness - Alternating soil layers of differing composition - Alternating thin seams of silt and clay - Variation of color Laminae Parting Seam Layer Stratum Pocket Lens Occasional Frequent Interbedded Varved Mottled DENSITY OR CONSISTENCY PENETRATION RESISTANCE GEOLOGIC INTERPRETATION Deposit type - GLACIAL TILL, ALLUVIUM, FILL..... U.S. Standard Series Seive Clear Square Sieve Openings UNIFIED SOIL CLASSIFICATION SYSTEM TYPICAL NAMES Well graded gravels, gravel-sand mixtures Poorly graded gravels, gravel-sand mixtures Well graded sands, gravelly sands Poorly graded sands, gravelly sands Silty sands, poorly graded sand-silt mixtures Clayey sands, poorly graded sand-clay mixtures Organic clays and organic silty clays of low plasticity Inorganic clays of high plasticity, fat clays Peat and other highly organic soils Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays Inorganic silty, micaceous or diatomaceous fine sandy or silty soils, elastic silts Group Symbol Graphic SymbolMAJOR DIVISIONS Silty gravels, poorly graded gravel-sand-silt mixtures Clayey gravels, poorly graded gravel-sand-clay mixtures Organic clays of medium to high plasticity, organic silts The natural soils are identified by criteria of Unified Soil Classification System (USCS), with appropriate group symbol in parenthesis for each soil description. Fill materials may not be classified by USCS criteria. GENERAL NOTES 1.Logs of subsurface explorations depict soil, rock and groundwater conditions only at the locations specified on the dates indicated. Subsurface conditions may vary at other locations and at other times. 2.Water levels noted on the logs were measured at the times and under the conditions indicated. During test borings, these water levels could have been affected by the introduction of water into the borehole, extraction of tools on other procedures and thus may not reflect actual groundwater level at the test boring location. Groundwater level fluctuations may also occur as a result of variations in precipitation, temperature, season, tides, adjacent construction activities and pumping of water supply wells and construction dewatering systems. Fine Sand MediumCoarse Gravel FineCoarseCobblesBoulders 20043"12"40103/4" Silts and Clays 0.074 mm4.75 mm76 mm305 mm 0.43 mm2.00 mm19 mm Gravels More than half of coarse fraction is larger than number 4 sieve Gravels with little or no fines Gravels with over 12% fines Sands with little or no fines Sands with over 12% fines Sands More than half of coarse fraction is smaller than number 4 sieve Coarse grained soils: more than half is larger than number 200 sieve Fined-grained soils: more than half smaller than number 200 sieve Silts and Clays Liquid limit 50% or less Silts and Clays Liquid limit greater than 50% Highly organic soils GW GP GM GC SW SP SM SC ML CL OL MH CH OH PT Soil description on logs of subsurface explorations are based on Standard Penetration Test results, visual-manual examination of exposed soil and soil samples, and the results of laboratory tests on selected samples. The criteria, descriptive terms and definitions are as follows: Standard Penetration Test (ASTM D-1586) - Number of blows required to drive a standard 2 in. O.D. split spoon or a modified California sampler 1 ft., with a 140 lb. weight falling freely through 30 in. Density of Cohesionless Soils Standard Penetration Test (Blows per ft.) Consistency of Cohesive Soils Penetration Resistance (Blows per ft.) Very Loose Loose Medium Dense Dense Very Dense 0-4 5-10 11-30 31-50 > 50 Very Soft Soft Medium Stiff Stiff Very Stiff Hard 0-2 3-4 5-8 9-15 16-30 > 30 COLOR:Color descriptions based on the Munsell Soil Color Chart Modified California (Blows per ft.) 0-4 5-12 13-35 36-60 > 60 J:\GRAPHICS\TEMP\MCELENEY-T\FIELD SERVICES\SUBSURFACE EXPLORATION LOG KEY\HA-SUBSURFACE EXPLORATION KEY2018-0828 SOILS ONLY.DWGMCELENEY, TERRI8.5X11 P8/28/2018 6:26 PMLayout:Printed: 86 19 18 18 777 000 000 10.5 0.410.0 0.9 5.9 5.0 3.47.5 -14.1 ASPHALT ROADWAY, 5 in. AC CRUSHED STONE, 6 in. AB Silty GRAVEL with sand (GM) Corrosivity test (See Appendix D) -FILL- Loose to medium dense brown and red-brown clayey GRAVEL with sand (GC), mps 1.25 in., moist to wet -FILL- Note: Installed casing to 8 ft. Very soft gray lean CLAY (CL), organic odor, wet, low to medium plasticity, lenses of sand, occasional seashell fragments PP=0.25 tsf TV=0.50 tsf PP=0.25 tsf TV=1.25 tsfMCSSTMCS MCSGM GC CL HA1-5.5 HA1-TW1-10.0 HA1-15.5 HA1-20.0Start File No. R. Mandzulashvili See Plan Roller Bit Push to 8 ft 6:58 N/A 4 15 March 2022 Dilatancy : R - Rapid S - Slow N - None Toughness : L - Low M - Medium H - High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Time (hr.)Date Hammer Fall (in.) of Hole Depth (ft) to: Hammer Weight (lb)Casing: HA-1 Samples Drilling Equipment and Procedures 1 Datum H&A Rep. Hammer Type 03/15/22 Boring No. Bottom 0204962-000 Elapsed Summary Field Tests: Drill Mud: Driller Location Rock Cored (ft) PID Make & Model: Hoist/Hammer: Rig Make & Model: 8.0 101.5 Time Water Level Data Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Sheet No. Bottom Overburden (ft) Finish Boring Diameter (in.) Water Bit Type: Boring No. Plasticity : N - Nonplastic L - Low M - Medium H - High Dry Strength : N - None L - Low M - Medium H - High V - Very High Elevation Sampler Type Legend of 15 March 2022 M.Sevilla Bentonite 0.0 6.0 of Casing 30 HA-1 NAD 1983 Winch Automatic Hammer MiniRAE 3000 10.6 eV 17SPT - Standard Penetration Test 140 Automatic Hammer Truck 101.5 5.0 10.9 ft ST - Shelby TubeGB - Grab Sample MCS - Modified California Sampler (2.43-in ID) Client Contractor Project Steelwave - The Terminal, 101 Terminal CT Steelwave Pitcher Drilling Moisture(%)Fines(%)Elevation (ft)10 5 0 -5 -10 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)0 5 10 15 20 25 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 49 27 18 15 18 18 18 15 14 563 142030 141115 11109 1925 27 14 15 20 14 13 15 25.0 -19.1 30.0 -24.1 35.0 -37.4 48.3 -40.6 51.5 Loose gray poorly-graded SAND with silt (SP-SM), organic odor, occasional partially decomposed vegetation, fine grained TV=0.50 tsf Dense olive-gray clayey SAND (SC), organic odor, wet Medium dense to dense brown silty SAND (SM), wet, medium to fine grained Medium dense gray poorly-graded SAND with silt (SP-SM), wet, fine grained Medium dense gray silty sand (SM), wet, medium to fine grainedSPTMCSSPTSPTMCSSPT SPTSP-SM SC SM SP-SM SM HA1-25.0 HA1-30.0 HA1-35.0 HA1-40.0 HA1-45.0 HA1-50.0 HA1-55.0HA-1 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-1 2 0204962-000 Moisture(%)Fines(%)Elevation (ft)-15 -20 -25 -30 -35 -40 -45 -50 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)25 30 35 40 45 50 55 60 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 18 18 18 13 2117 032 91540 37 37 37 -52.163.0 -56.1 67.0 -57.8 68.7 -62.173.0 -63.1 74.0 -65.6 76.5 Stiff gray lean CLAY with sand (CL) Note: 200 psi to 600 psi sand at tip, not enough recover in TW tube Dense to dense gray poorly-graded SAND with silt (SP-SM), homogeneous, no odor, wet, medium to fine grained Very stiff gray fat CLAY (CH), no odor, moist, high plasticity PP=2.0 tsf Dense gray poorly-graded SAND with silt (SP-SM), homogeneous, wet Medium stiff gray fat CLAY (CH), no odor, moist, high plasticity PP=2.00 tsf Medium dense to very dense gray poorly-graded SAND with silt (SP-SM), wet, fine grainedSTSPTSPT SPTSPTCL SP-SM CH SP-SM CH SP-SM HA1-TW2-65.0 HA1-67.5 HA1-75.0 HA1-85.0 HA1-95.0HA-1 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-1 3 0204962-000 Moisture(%)Fines(%)Elevation (ft)-55 -60 -65 -70 -75 -80 -85 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)65 70 75 80 85 90 95 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 241920 -89.1 100.0 -90.6 101.5 Very stiff to hard sandy CLAY (CL), no odor, wet, fine grained, low to medium plasticity Note: Traces of wood fibers at 100 ft. BOTTOM OF EXPLORATION 101.5 FTSPTCL HA1-100HA-1 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-1 4 0204962-000 Moisture(%)Fines(%)Elevation (ft)-90 -95 -100 -105 -110 -115 -120 -125 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)100 105 110 115 120 125 130 135 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 104 16 11 18 100 668 000 0 00 91112 9.4 1.2 8.1 2.5 6.4 4.2 3.17.5 -6.9 17.5 -8.9 19.5 CRUSHED STONE, 14 in. AB Medium dense brown silty SAND (SM), no odor, moist Corrosivity test (See Appendix D) -FILL- Dark brown and gray-brown clayey SAND with gravel (SC), moist to wet R-value=18 (See Appendix D) Medium dense clayey SAND with gravel (SC), intermixed, no odor, moist to dry, cobbles at 7 ft -FILL- Very soft olive-gray and dark brown lean CLAY (CL), medium plasticity, traces of organic fibers, particularly decomposed roots, vegetation PP=0.25 tsf TV=2.00 tsf Note: TW pressure 7.5 ft 50 psi, 8.5 ft 75 psi, 9.5 ft 100 psi PP=0.25 tsf TV=0.50 tsf PP=0.25 tsf TV=1.00 tsf Very soft olive-gray gravelly lean CLAY with sand (CL), organic odor, wet, medium to fine grained, 55% fines Olive-gray lean CLAY (CL), no odor, clay bluish gray cuttings 17.5 to 19.5 ft Medium dense to dense brown silty SAND (SM), no odor, wet, fine grained, 15% finesSPTSTMCSMCS SPTSM SC SC CL CL CL SM HA2-0.5 HA2-7.5 HA2-10.25 HA2-15.5 HA2-20Start File No. R. Mandzulashvili See Plan Cutting Head Push to 8 ft 8:52 7.5 4 14 March 2022 Dilatancy : R - Rapid S - Slow N - None Toughness : L - Low M - Medium H - High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Time (hr.)Date Hammer Fall (in.) of Hole Depth (ft) to: Hammer Weight (lb)Casing: HA-2 Samples Drilling Equipment and Procedures 1 Datum H&A Rep. Hammer Type 03/14/22 Boring No. Bottom 0204962-000 Elapsed Summary Field Tests: Drill Mud: Driller Location Rock Cored (ft) PID Make & Model: Hoist/Hammer: Rig Make & Model: 8.0 101.5 Time Water Level Data Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Sheet No. Bottom Overburden (ft) Finish Boring Diameter (in.) Water Bit Type: Boring No. Plasticity : N - Nonplastic L - Low M - Medium H - High Dry Strength : N - None L - Low M - Medium H - High V - Very High Elevation Sampler Type Legend of 14 March 2022 M.Sevilla Bentonite 0.0 5.5 of Casing 30 HA-2 NAD 1983 Winch Automatic Hammer MiniRAE 3000 10.6 eV 16SPT - Standard Penetration Test 140 Automatic Hammer Truck 101.5 5.0 10.6 ft ST - Shelby TubeGB - Grab Sample MCS - Modified California Sampler (2.43-in ID) Client Contractor Project Steelwave - The Terminal, 101 Terminal CT Steelwave Pitcher Drilling Moisture(%)Fines(%)Elevation (ft)10 5 0 -5 -10 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)0 5 10 15 20 25 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 22 22 13 18 18 19 18 14 18 141217 71110 152120 172012 914 17 8 12 14 6 1120 -29.440.0 -30.9 41.5 -39.4 50.0 -41.9 52.5 -50.9 61.5 Medium dense brown silty SAND (SM), no odor, wet, medium to fine grained Dense olive-brown clayey SAND (SC), wet Dense gray silty SAND (SM), no odor, wet, fine grained, 35% fines Very stiff gray lean CLAY (CL), no odor, moist, medium to high plasticity PP=2.50 tsf TV=5.50 tsf Medium dense gray silty SAND (SM), fine grained, alternating layers of clay and silty sand, low plasticity Stiff gray fat CLAY (CH), no odor, moist, high plasticitySPTSPTSPTSPTSPTSPTMCSSM SC SM CL SM CH HA2-25 HA2-30 HA2-35 HA2-35 HA2-45 HA2-50 HA2-60HA-2 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-2 2 0204962-000 Moisture(%)Fines(%)Elevation (ft)-15 -20 -25 -30 -35 -40 -45 -50 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)25 30 35 40 45 50 55 60 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 55 18 18 157 84 10 -80.4 91.0-81.0 91.6 PP=2.75 tsf TV=4.50 tsf TXUU Su=2313 psf @ 4690 psf PP=1.50 tsf TV=4.00 tsf Stiff gray sandy CLAY (CL), no odor, moist, fine grained sand, medium to high plasticity, 55% fines Dense silty SAND (SM), no odor, wet, fine grained, 15% fines Note: Drill rods chattering at 97 ft. 69 STMCSSPTCL SM HA2-TW2-70 HA2-80 HA2-90HA-2 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-2 3 0204962-000 Moisture(%)Fines(%)Elevation (ft)-55 -60 -65 -70 -75 -80 -85 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)65 70 75 80 85 90 95 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 18 152525 -90.9 101.5 Note: Traces of wood fibers at 100 ft. BOTTOM OF EXPLORATION 101.5 FTSPT HA2-100HA-2 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-2 4 0204962-000 Moisture(%)Fines(%)Elevation (ft)-90 -95 -100 -105 -110 -115 -120 -125 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)100 105 110 115 120 125 130 135 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 21 24 15 555 336 9.8 0.5 9.3 1.0 5.3 5.0 3.3 7.0 -4.7 15.0 -10.7 21.0 ASPHALT ROADWAY, 6 in. AC CRUSHED STONE, 6 in. AB Dark brown and gray-brown silty GRAVEL with sand (GM), occasional brick pieces Corrosivity test (See Appendix D) -FILL- Loose gray clayey GRAVEL with sand (GC), slight organic odor, moist -FILL- Stiff gray lean CLAY (CL) PP=2.50 tsf TV=3.00 tsf Stiff brown sandy lean CLAY (CL), no odor, wet, medium plasticity LL=30, PI=10 TXUU Su=2750 psf @ 1260 psf Consolidation test (See Appendix D) Loose to dense brown poorly-graded SAND with silt (SP-SM), no odor, wet, fine grained, 10% fines 107 101MCSST SPTGM GC CL CL SP-SM HA3-5.0 HA3-TW1-14 HA3-20Start File No. R. Mandzulashvili See Plan Cutting Head Push 7:08 N/A 4 17 March 2022 Dilatancy : R - Rapid S - Slow N - None Toughness : L - Low M - Medium H - High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Time (hr.)Date Hammer Fall (in.) of Hole Depth (ft) to: Hammer Weight (lb)Casing: HA-3 Samples Drilling Equipment and Procedures 1 Datum H&A Rep. Hammer Type 03/17/22 Boring No. Bottom 0204962-000 Elapsed Summary Field Tests: Drill Mud: Driller Location Rock Cored (ft) PID Make & Model: Hoist/Hammer: Rig Make & Model: 8.0 118.0 Time Water Level Data Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Sheet No. Bottom Overburden (ft) Finish Boring Diameter (in.) Water Bit Type: Boring No. Plasticity : N - Nonplastic L - Low M - Medium H - High Dry Strength : N - None L - Low M - Medium H - High V - Very High Elevation Sampler Type Legend of 17 March 2022 M.Sevilla Bentonite 0.0 5.0 of Casing 30 HA-3 NAD 1983 Winch Automatic Hammer MiniRAE 3000 10.6 eV 14SPT - Standard Penetration Test 140 Automatic Hammer Truck 118 5.0 10.3 ft ST - Shelby TubeGB - Grab Sample MCS - Modified California Sampler (2.43-in ID) Client Contractor Project Steelwave - The Terminal, 101 Terminal CT Steelwave Pitcher Drilling Moisture(%)Fines(%)Elevation (ft)10 5 0 -5 -10 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)0 5 10 15 20 25 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 18 39 37 18 18 18 18 18 18 172017 6107 152222 101215 56 8 16 17 6 -17.2 27.5 -22.2 32.5 -28.2 38.5 Medium dense to dense brown poorly-graded SAND (SP), no odor, wet, medium to fine grained, <10% fines Dense brown clayey SAND (SC), no odor, wet, medium to fine grained Medium dense gray clayey SAND (SC), moist, fine grained sand, ~45% fines LL=27, PI=12SPTSPTSPTSPT SPTSPTSTSP SC SC HA3-25 HA3-30 HA3-35 HA3-40 HA3-45 HA3-50 HA3-TW2-60HA-3 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-3 2 0204962-000 Moisture(%)Fines(%)Elevation (ft)-15 -20 -25 -30 -35 -40 -45 -50 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)25 30 35 40 45 50 55 60 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 59 18 18 18 245 182521 710 25 -59.7 70.0 -66.7 77.0 -80.7 91.0 Stiff gray fat CLAY (CH), no odor, moist, high plasticity PP=2.50 tsf Dense gray poorly-graded SAND with silt (SP-SM), no odor, wet, fine grained sand, 10% fines Hard gray sandy CLAY (CL), no odor, wet, fine grained sandSPTSPTSPTCH SP-SM CH HA3-70 HA3-80 HA3-90HA-3 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-3 3 0204962-000 Moisture(%)Fines(%)Elevation (ft)-55 -60 -65 -70 -75 -80 -85 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)65 70 75 80 85 90 95 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 18 232028 -89.7 100.0 -104.7 115.0 -107.7118.0 Dense gray silty SAND (SM), no odor, wet, fine grained Note: Very soft to soft, completely to highly weathered, gray, green, red, coarse grained to fine grained, weathered bedrock cuttings, cemented sands, pebbles, quartz. BOTTOM OF EXPLORATION 118.0 FTSPTSM HA3-100HA-3 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-3 4 0204962-000 Moisture(%)Fines(%)Elevation (ft)-90 -95 -100 -105 -110 -115 -120 -125 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)100 105 110 115 120 125 130 135 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 101 18 18 18 468 000 000 7.8 0.5 7.3 1.0 0.87.5 ASPHALT ROADWAY, 6.0 in. AC CRUSHED STONE, 5 to 6 in. AB Loose dark brown and gray silty SAND (SM), homogeneous Very soft gray lean CLAY (CL), occasional organics, fragments, partially decomposed vegetation PP=0.25 tsf TV=0.50 tsf PP=0.25 tsf TV=0.50 tsf PP=0.25 tsfMCSSTMCS SPTSM CL HA4-5.0 HA-TW1-12.5 HA4-15 HA4-20Start File No. R. Mandzulashvili See PlanPush 7:00 N/A 4 18 March 2022 Dilatancy : R - Rapid S - Slow N - None Toughness : L - Low M - Medium H - High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Time (hr.)Date Hammer Fall (in.) of Hole Depth (ft) to: Hammer Weight (lb)Casing: HA-4 Samples Drilling Equipment and Procedures 1 Datum H&A Rep. Hammer Type 03/18/22 Boring No. Bottom 0204962-000 Elapsed Summary Field Tests: Drill Mud: Driller Location Rock Cored (ft) PID Make & Model: Hoist/Hammer: Rig Make & Model: 8.0 126.5 Time Water Level Data Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Sheet No. Bottom Overburden (ft) Finish Boring Diameter (in.) Water Bit Type: Boring No. Plasticity : N - Nonplastic L - Low M - Medium H - High Dry Strength : N - None L - Low M - Medium H - High V - Very High Elevation Sampler Type Legend of 18 March 2022 M.Sevilla Bentonite 0.0 6.0 of Casing 30 HA-4 NAD 1983 Winch Automatic Hammer MiniRAE 3000 10.6 eV 14SPT - Standard Penetration Test 140 Automatic Hammer Truck 126.5 5.0 8.3 ft ST - Shelby TubeGB - Grab Sample MCS - Modified California Sampler (2.43-in ID) Client Contractor Project Steelwave - The Terminal, 101 Terminal CT Steelwave Pitcher Drilling Moisture(%)Fines(%)Elevation (ft)5 0 -5 -10 -15 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)0 5 10 15 20 25 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 95 62 18 19 16 16 18 15 000 000 002 1214 16 2 15 24 16 37 30 -32.7 41.0 -36.745.0 -37.0 45.3 -39.2 47.5 -42.7 51.0 -45.0 53.3 -52.7 61.0 PP=0.25 tsf PP=0-.50 tsf TV=2.25 tsf Consolidation test (See Appendix D) PP=0.50 tsf Very loose dark brown to black silty SAND (SM), slight organic odor, wet, medium to fine grained Very soft gray sandy CLAY (CL), occasional organics, fragments, partially decomposed vegetation, traces of roots Medium dense gray to black poorly-graded SAND (SP), no odor, wet, medium grained, ~5% fines Medium dense gray to black silty SAND (SM), no odor, wet, medium to fine grained Dense to very dense gray to black poorly-graded SAND (SP) Very dense dark greenish gray well-graded SAND (SW), no odor, wet, coarse to fine grained Dense dark olive-gray clayey SAND (SC), no odor, wet, fine grained sand, 40% fines 46SPTSPTST SPTSPTSPTSPTSM CL SP SM SP SW SC HA4-25 HA4-30 HA-TW2-35 HA-40 HA-45 HA-50 HA-55HA-4 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-4 2 0204962-000 Moisture(%)Fines(%)Elevation (ft)-20 -25 -30 -35 -40 -45 -50 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)25 30 35 40 45 50 55 60 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 24 16 18 18 18 121210 21031 385050/3" 23 32 32 -57.7 66.0 -68.0 76.3 -76.7 85.0 -86.7 95.0 PP=2.00 tsf Hard to stiff gray fat CLAY (CH), wet, traces of organics Dense gray clayey SAND (SC), traces of organics Very dense grayish brown well-graded SAND (SW), no odor, wet, fine to coarse grained Very dense brown and light brown clayey SAND (SC), wet, fine to medium grainedSPTSPTMCS SPTCH SC SW SC HA-65 HA-75 HA-85 HA-95HA-4 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-4 3 0204962-000 Moisture(%)Fines(%)Elevation (ft)-55 -60 -65 -70 -75 -80 -85 -90 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)65 70 75 80 85 90 95 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 18 7715 222220 -91.7 100.0 -106.7 115.0 -118.2126.5 Hard gray sandy CLAY (SC), minor iron oxide staining Very dense gray to brown silty SAND (SM), wet, fine to medium grained, partially cemented, minor iron oxide staining BOTTOM OF EXPLORATION 126.5 FTSPTSPTSC SM HA-105 HA-125HA-4 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-4 4 0204962-000 Moisture(%)Fines(%)Elevation (ft)-95 -100 -105 -110 -115 -120 -125 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)100 105 110 115 120 125 130 135 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 91 96 18 467 9310 142430 10.6 0.3 10.4 0.5 3.9 7.0 1.4 9.5 -4.6 15.5 -5.6 16.5 -9.1 20.0 ASPHALT ROADWAY, 4 in. AC CRUSHED STONE, 2 in. AB Medium dense clayey GRAVEL with sand (GC), moist Corrosivity test (See Appendix D) -FILL- Very soft gray lean CLAY (CL), organic odor PP=0.25 tsf TV=2.00 tsf Very soft gray fat CLAY (CH) PP=0.25 tsf TV=2.00 tsf LL=89, PI=52 TXUU Su=319 psf @ 950 psf Consolidation test (See Appendix D) Loose poorly-graded SAND (SP), no odor, wet, medium grained Very soft gray lean CLAY (CL), organic odor Medium dense to dense brown SAND with silt (SP-SM), no odor, wet, fine grained, 10- 15% fines 46 46SPTMCSSTST MCSMCSGC CL CH SP CL SP-SM HA5-Bulk-0.5 HA5-5.5 HA5-TW1-7 HA5-TW2-9.5 HA5-15 HA5-20Start File No. R. Mandzulashvili See Plan 8:19 7.0 4 17 March 2022 Dilatancy : R - Rapid S - Slow N - None Toughness : L - Low M - Medium H - High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Time (hr.)Date Hammer Fall (in.) of Hole Depth (ft) to: Hammer Weight (lb)Casing: HA-5 Samples Drilling Equipment and Procedures 1 Datum H&A Rep. Hammer Type 03/16/22 Boring No. Bottom 0204962-000 Elapsed Summary Field Tests: Drill Mud: Driller Location Rock Cored (ft) PID Make & Model: Hoist/Hammer: Rig Make & Model: 8.0 114 Time Water Level Data Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Sheet No. Bottom Overburden (ft) Finish Boring Diameter (in.) Water Bit Type: Boring No. Plasticity : N - Nonplastic L - Low M - Medium H - High Dry Strength : N - None L - Low M - Medium H - High V - Very High Elevation Sampler Type Legend of 17 March 2022 M.Sevilla Bentonite 0.0 5.5 of Casing 30 HA-5 NAD 1983 Winch Automatic Hammer MiniRAE 3000 10.6 eV 17SPT - Standard Penetration Test 140 Automatic Hammer Truck 114 5.0 10.9 ft ST - Shelby TubeGB - Grab Sample MCS - Modified California Sampler (2.43-in ID) Client Contractor Project Steelwave - The Terminal, 101 Terminal CT Steelwave Pitcher Drilling Moisture(%)Fines(%)Elevation (ft)10 5 0 -5 -10 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)0 5 10 15 20 25 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 29 18 18 18 18 18 18 18 161619 151719 1289 212221 1120 27 27 27 14 16 2024 -21.6 32.5 -37.1 48.0 -49.1 60.0 Medium dense to dense brown silty SAND (SM), no odor, wet, medium to fine grained Dense to very dense olive-gray SAND with silt (SP-SM), no odor, wet, fine grained, 5-10% fines Dense gray silty SAND (SM), no odor, wet, fine grained, 15-20% finesSPTSPTSPTSPTSPTSPT SPTSM SP-SM SM HA5-25 HA5-30 HA5-35 HA5-40 HA5-45 HA5-50 HA5-60HA-5 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-5 2 0204962-000 Moisture(%)Fines(%)Elevation (ft)-15 -20 -25 -30 -35 -40 -45 -50 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)25 30 35 40 45 50 55 60 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 42 18 18 71215 1822 27 -57.1 68.0 -71.1 82.0 Very stiff gray fat CLAY (CH) PP=3.00 tsf TV=3.00 tsf PP=4.00 tsf TV=4.50 tsf LL=65, PI=40 TXUU Su=1740 psf @ 5000 psf Dense gray poorly-graded SAND (SP) with interbedded layers of sandy lean CLAY (CL), no odor, wet, fine grained 80MCSST SPTCH SP HA5-70 HA5-TW3-77 HA5-90HA-5 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-5 3 0204962-000 Moisture(%)Fines(%)Elevation (ft)-55 -60 -65 -70 -75 -80 -85 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)65 70 75 80 85 90 95 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No. 18 222545 -89.1 100.0 -95.1106.0 -102.6 113.5 -103.1 114.0 Dense to very dense gray poorly-graded SAND with silt (SP-SM), no odor, wet, fine grained, ~10% fines Gray sandy lean CLAY (CL) Note: Very soft to soft, highly weathered, gray, green, red, coarse grained to fine grained, weathered bedrock cuttings, cemented sands, pebbles, quartz. BOTTOM OF EXPLORATION 114.0 FTSPTSP-SM CL HA5-100HA-5 4 File No. Boring No.NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. ofSheet No. HA-5 4 0204962-000 Moisture(%)Fines(%)Elevation (ft)-90 -95 -100 -105 -110 -115 -120 -125 H&A BORING MDH 2016 SAMPLE R2 204962_HA-CALIFORNIA.GLB \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0204962\GINT\204962-000_GEO_BORINGS.GPJ 19 Apr 22Depth (ft)100 105 110 115 120 125 130 135 GEOTECHNICAL TEST BORING REPORT Recovery (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (GROUP NAME, density/consistency, color, max. particle size*,structure, odor, moisture, optional descriptionsGEOLOGIC INTERPRETATION)Dry Density(pcf)Sample TypeUSCS SymbolSample No.     APPENDIX B Cone Penetration Test Results GREGG DRILLING, LLC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES 2726 Walnut Ave. • Signal Hill, California 90755 • (562) 427-6899 • FAX (562) 427-3314 950 Howe Road. • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 www.greggdrilling.com March 16, 2022 Haley & Aldrich Attn: Rati Subject: CPT Site Investigation 101 & 103 Terminal Ct South San Francisco, California GREGG Project Number: P7222007 & P7222008 Dear Rati: The following report presents the results of GREGG Drilling Cone Penetration Test investigation for the above referenced site. The following testing services were performed: 1 Cone Penetration Tests (CPTU) 2 Pore Pressure Dissipation Tests (PPD) 3 Seismic Cone Penetration Tests (SCPTU) 4 Membrane Interface Probe (MIP) 5 Hydraulic Profiling Tool (HPT) 6 Groundwater Sampling (GWS) 7 Soil Sampling (SS) 8 Vapor Sampling (VS) A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact me at 949-903-6873. Sincerely, Gregg Drilling, LLC. CPT Reports Team Gregg Drilling, LLC. GREGG DRILLING, LLC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES 2726 Walnut Ave. • Signal Hill, California 90755 • (562) 427-6899 • FAX (562) 427-3314 950 Howe Road. • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 www.greggdrilling.com Cone Penetration Test Sounding Summary -Table 1- CPT Sounding Identification Date Termination Depth (feet) Depth of Groundwater Samples (feet) Depth of Soil Samples (feet) Depth of Pore Pressure Dissipation Tests (feet) SCPT-1 3/14/2022 100.07 - - 23.62 CPT-2 3/15/2022 100.07 - - 24.93 CPT-3 3/15/2022 83.01 - - 21.33 CPT-4 3/15/2022 97.6 - - 23.29 SCPT-2 3/14/2022 99.41 - - 18.54 GREGG DRILLING, LLC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES 2726 Walnut Ave. • Signal Hill, California 90755 • (562) 427-6899 • FAX (562) 427-3314 950 Howe Road. • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 www.greggdrilling.com Bibliography Lunne, T., Robertson, P.K. and Powell, J.J.M., “Cone Penetration Testing in Geotechnical Practice” E & FN Spon. ISBN 0 419 23750, 1997 Roberston, P.K., “Soil Classification using the Cone Penetration Test”, Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158. Mayne, P.W., “NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization”, available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112. Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, “Seismic CPT to Measure In-Situ Shear Wave Velocity”, Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803. Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550. Robertson, P.K., T. Lunne and J.J.M. Powell, “Geo-Environmental Application of Penetration Testing”, Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47. Campanella, R.G. and I. Weemees, “Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies”, Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567. DeGroot, D.J. and A.J. Lutenegger, “Reliability of Soil Gas Sampling and Characterization Techniques”, International Site Characterization Conference - Atlanta, 1998. Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, “Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT”, 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000. Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, “Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers” BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312. Copies of ASTM Standards are available through www.astm.org Revised 10/21/2021 i Cone Penetration Testing Procedure (CPT) Gregg Drilling carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, Figure CPT. The cone takes measurements of tip resistance (qc), sleeve resistance (fs), and penetration pore water pressure (u2). Measurements are taken at either 2.5 or 5 cm intervals during penetration to provide a nearly continuous profile. CPT data reduction and basic interpretation is performed in real time facilitating on- site decision making. The above mentioned parameters are stored electronically for further analysis and reference. All CPT soundings are performed in accordance with revised ASTM standards (D 5778-12). The 5mm thick porous plastic filter element is located directly behind the cone tip in the u2 location. A new saturated filter element is used on each sounding to measure both penetration pore pressures as well as measurements during a dissipation test (PPDT). Prior to each test, the filter element is fully saturated with oil under vacuum pressure to improve accuracy. When the sounding is completed, the test hole is backfilled according to client specifications. If grouting is used, the procedure generally consists of pushing a hollow tremie pipe with a “knock out” plug to the termination depth of the CPT hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized. Figure CPT Revised 10/21/2021 ii Gregg 15cm2 Standard Cone Specifications Dimensions Cone base area 15 cm2 Sleeve surface area 225 cm2 Cone net area ratio 0.85 Specifications Cone load cell Full scale range 180 kN (20 tons) Overload capacity 150% Full scale tip stress 120 MPa (1,200 tsf) Repeatability 120 kPa (1.2 tsf) Sleeve load cell Full scale range 31 kN (3.5 tons) Overload capacity 150% Full scale sleeve stress 1,400 kPa (15 tsf) Repeatability 1.4 kPa (0.015 tsf) Pore pressure transducer Full scale range 7,000 kPa (1,000 psi) Overload capacity 150% Repeatability 7 kPa (1 psi) Note: The repeatability during field use will depend somewhat on ground conditions, abrasion, maintenance and zero load stability. Revised 10/21/2021 i Cone Penetration Test Data & Interpretation The Cone Penetration Test (CPT) data collected are presented in graphical and electronic form in the report. The plots include interpreted Soil Behavior Type (SBT) based on the charts described by Robertson (1990). Typical plots display SBT based on the non-normalized charts of Robertson et al (1986). For CPT soundings deeper than 30m, we recommend the use of the normalized charts of Robertson (1990) which can be displayed as SBTn, upon request. The report also includes spreadsheet output of computer calculations of basic interpretation in terms of SBT and SBTn and various geotechnical parameters using current published correlations based on the comprehensive review by Lunne, Robertson and Powell (1997), as well as recent updates by Professor Robertson (Guide to Cone Penetration Testing, 2015). The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg Drilling LLC does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software. Some interpretation methods require input of the groundwater level to calculate vertical effective stress. An estimate of the in-situ groundwater level has been made based on field observations and/or CPT results, but should be verified by the user. A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface. Note that it is not always possible to clearly identify a soil type based solely on qt, fs, and u2. In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the correct soil behavior type. Figure SBT (After Robertson et al., 1986) – Note: Colors may vary slightly compared to plots ZONE SBT 1 2 3 4 5 6 7 8 9 10 11 12 Sensitive, fine grained Organic materials Clay Silty clay to clay Clayey silt to silty clay Sandy silt to clayey silt Silty sand to sandy silt Sand to silty sand Sand Gravely sand to sand Very stiff fine grained* Sand to clayey sand* *over consolidated or cemented Revised 10/21/2021 i Cone Penetration Test (CPT) Interpretation Gregg uses a proprietary CPT interpretation and plotting software. The software takes the CPT data and performs basic interpretation in terms of soil behavior type (SBT) and various geotechnical parameters using current published empirical correlations based on the comprehensive review by Lunne, Robertson and Powell (1997). The interpretation is presented in tabular format using MS Excel. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software. The following provides a summary of the methods used for the interpretation. Many of the empirical correlations to estimate geotechnical parameters have constants that have a range of values depending on soil type, geologic origin and other factors. The software uses ‘default’ values that have been selected to provide, in general, conservatively low estimates of the various geotechnical parameters. Input: 1 Units for display (Imperial or metric) (atm. pressure, pa = 0.96 tsf or 0.1 MPa) 2 Depth interval to average results (ft or m). Data are collected at either 0.02 or 0.05m and can be averaged every 1, 3 or 5 intervals. 3 Elevation of ground surface (ft or m) 4 Depth to water table, zw (ft or m) – input required 5 Net area ratio for cone, a (default to 0.85) 6 Relative Density constant, CDr (default to 350) 7 Young’s modulus number for sands, α (default to 5) 8 Small strain shear modulus number a. for sands, SG (default to 180 for SBTn 5, 6, 7) b. for clays, CG (default to 50 for SBTn 1, 2, 3 & 4) 9 Undrained shear strength cone factor for clays, Nkt (default to 15) 10 Over Consolidation ratio number, kocr (default to 0.3) 11 Unit weight of water, (default to γw = 62.4 lb/ft3 or 9.81 kN/m3) Column 1 Depth, z, (m) – CPT data is collected in meters 2 Depth (ft) 3 Cone resistance, qc (tsf or MPa) 4 Sleeve resistance, fs (tsf or MPa) 5 Penetration pore pressure, u (psi or MPa), measured behind the cone (i.e. u2) 6 Other – any additional data 7 Total cone resistance, qt (tsf or MPa) qt = qc + u (1-a) Revised 10/21/2021 ii 8 Friction Ratio, Rf (%) Rf = (fs/qt) x 100% 9 Soil Behavior Type (non-normalized), SBT see note 10 Unit weight, γ (pcf or kN/m3) based on SBT, see note 11 Total overburden stress, σv (tsf) σvo = σ z 12 In-situ pore pressure, uo (tsf) uo = γ w (z - zw) 13 Effective overburden stress, σ'vo (tsf ) σ'vo = σvo - uo 14 Normalized cone resistance, Qt1 Qt1= (qt - σvo) / σ'vo 15 Normalized friction ratio, Fr (%) Fr = fs / (qt - σvo) x 100% 16 Normalized Pore Pressure ratio, Bq Bq = u – uo / (qt - σvo) 17 Soil Behavior Type (normalized), SBTn see note 18 SBTn Index, Ic see note 19 Normalized Cone resistance, Qtn (n varies with Ic) see note 20 Estimated permeability, kSBT (cm/sec or ft/sec) see note 21 Equivalent SPT N60, blows/ft see note 22 Equivalent SPT (N1)60 blows/ft see note 23 Estimated Relative Density, Dr, (%) see note 24 Estimated Friction Angle, φ', (degrees) see note 25 Estimated Young’s modulus, Es (tsf) see note 26 Estimated small strain Shear modulus, Go (tsf) see note 27 Estimated Undrained shear strength, su (tsf) see note 28 Estimated Undrained strength ratio su/σv’ 29 Estimated Over Consolidation ratio, OCR see note Notes: 1 Soil Behavior Type (non-normalized), SBT (Lunne et al., 1997 and table below) 2 Unit weight, γ either constant at 119 pcf or based on Non-normalized SBT (Lunne et al., 1997 and table below) 3 Soil Behavior Type (Normalized), SBTn Lunne et al. (1997) 4 SBTn Index, Ic Ic = ((3.47 – log Qt1)2 + (log Fr + 1.22)2)0.5 5 Normalized Cone resistance, Qtn (n varies with Ic) Qtn = ((qt - σvo)/pa) (pa/(σvo)n and recalculate Ic, then iterate: When Ic < 1.64, n = 0.5 (clean sand) When Ic > 3.30, n = 1.0 (clays) When 1.64 < Ic < 3.30, n = (Ic – 1.64)0.3 + 0.5 Iterate until the change in n, ∆n < 0.01 Revised 10/21/2021 iii 6 Estimated permeability, kSBT based on Normalized SBTn (Lunne et al., 1997 and table below) 7 Equivalent SPT N60, blows/ft Lunne et al. (1997) 60 a N )/p(qt = 8.5   4.6 I1c 8 Equivalent SPT (N1)60 blows/ft (N1)60 = N60 CN, where CN = (pa/σvo)0.5 9 Relative Density, Dr, (%) Dr2 = Qtn / CDr Only SBTn 5, 6, 7 & 8 Show ‘N/A’ in zones 1, 2, 3, 4 & 9 10 Friction Angle, φ', (degrees) tan φ ' =      29.0' qlog68.2 1 vo c Only SBTn 5, 6, 7 & 8 Show’N/A’ in zones 1, 2, 3, 4 & 9 11 Young’s modulus, Es Es = α qt Only SBTn 5, 6, 7 & 8 Show ‘N/A’ in zones 1, 2, 3, 4 & 9 12 Small strain shear modulus, Go a. Go = SG (qt σ'vo pa)1/3 For SBTn 5, 6, 7 b. Go = CG qt For SBTn 1, 2, 3& 4 Show ‘N/A’ in zones 8 & 9 13 Undrained shear strength, su su = (qt - σvo) / Nkt Only SBTn 1, 2, 3, 4 & 9 Show ‘N/A’ in zones 5, 6, 7 & 8 14 Over Consolidation ratio, OCR OCR = kocr Qt1 Only SBTn 1, 2, 3, 4 & 9 Show ‘N/A’ in zones 5, 6, 7 & 8 The following updated and simplified SBT descriptions have been used in the software: SBT Zones SBTn Zones 1 sensitive fine grained 1 sensitive fine grained 2 organic soil 2 organic soil 3 clay 3 clay 4 clay & silty clay 4 clay & silty clay 5 clay & silty clay 6 sandy silt & clayey silt Revised 10/21/2021 iv 7 silty sand & sandy silt 5 silty sand & sandy silt 8 sand & silty sand 6 sand & silty sand 9 sand 10 sand 7 sand 11 very dense/stiff soil* 8 very dense/stiff soil* 12 very dense/stiff soil* 9 very dense/stiff soil* *heavily overconsolidated and/or cemented Track when soils fall with zones of same description and print that description (i.e. if soils fall only within SBT zones 4 & 5, print ‘clays & silty clays’) Revised 10/21/2021 v Estimated Permeability (see Lunne et al., 1997) SBTn Permeability (ft/sec) (m/sec) 1 3x 10-8 1x 10-8 2 3x 10-7 1x 10-7 3 1x 10-9 3x 10-10 4 3x 10-8 1x 10-8 5 3x 10-6 1x 10-6 6 3x 10-4 1x 10-4 7 3x 10-2 1x 10-2 8 3x 10-6 1x 10-6 9 1x 10-8 3x 10-9 Estimated Unit Weight (see Lunne et al., 1997) SBT Approximate Unit Weight (lb/ft3) (kN/m3) 1 111.4 17.5 2 79.6 12.5 3 111.4 17.5 4 114.6 18.0 5 114.6 18.0 6 114.6 18.0 7 117.8 18.5 8 120.9 19.0 9 124.1 19.5 10 127.3 20.0 11 130.5 20.5 12 120.9 19.0 Revised 10/21/2021 i Pore Pressure Dissipation Tests (PPDT) Pore Pressure Dissipation Tests (PPDT’s) conducted at various intervals can be used to measure equilibrium water pressure (at the time of the CPT). If conditions are hydrostatic, the equilibrium water pressure can be used to determine the approximate depth of the ground water table. A PPDT is conducted when penetration is halted at specific intervals determined by the field representative. The variation of the penetration pore pressure (u) with time is measured behind the tip of the cone and recorded. Pore pressure dissipation data can be interpreted to provide estimates of:  Equilibrium piezometric pressure  Phreatic Surface  In situ horizontal coefficient of consolidation (ch)  In situ horizontal coefficient of permeability (kh) In order to correctly interpret the equilibrium piezometric pressure and/or the phreatic surface, the pore pressure must be monitored until it reaches equilibrium, Figure PPDT. This time is commonly referred to as t100, the point at which 100% of the excess pore pressure has dissipated. A complete reference on pore pressure dissipation tests is presented by Robertson et al. 1992 and Lunne et al. 1997. A summary of the pore pressure dissipation tests completed for this project is included in Table 1. Figure PPDT Revised 10/21/2021 i Seismic Cone Penetration Testing (SCPT) Seismic Cone Penetration Testing (SCPT) can be conducted at various intervals during the Cone Penetration Test. Shear wave velocity (Vs) can then be calculated over a specified interval with depth. A small interval for seismic testing, such as 1-1.5m (3-5ft) allows for a detailed look at the shear wave profile with depth. Conversely, a larger interval such as 3-6m (10-20ft) allows for a more average shear wave velocity to be calculated. Gregg Drilling’s cones have a horizontally active geophone located 0.2m (0.66ft) behind the tip. To conduct the seismic shear wave test, the penetration of the cone is stopped and the rods are decoupled from the rig. An automatic hammer is triggered to send a shear wave into the soil. The distance from the source to the cone is calculated knowing the total depth of the cone and the horizontal offset distance between the source and the cone. To calculate an interval velocity, a minimum of two tests must be performed at two different depths. The arrival times between the two wave traces are compared to obtain the difference in time (∆t). The difference in depth is calculated (∆d) and velocity can be determined using the simple equation: v = ∆d/∆t Multiple wave traces can be recorded at the same depth to improve quality of the data. A complete reference on seismic cone penetration tests is presented by Robertson et al. 1986 and Lunne et al. 1997. A summary the shear wave velocities, arrival times and wave traces are provided with the report. Figure SCPT (S) 1 2 t 1 2 1 2 12 12 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 100.07 ft, Date: 3/14/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: SCPT-1 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grained Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio SPT N60 HAND AUGER N60 (blows/ft) 100806040200Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 SPT N60 Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type ClaySilty sand & sandy silt Clay Clay & silty claySilty sand & sandy silt Sand & silty sand Silty sand & sandy silt Sand & silty sand Silty sand & sandy silt Very dense/stiff soil Silty sand & sandy siltSand & silty sand Silty sand & sandy siltSand & silty sandSilty sand & sandy siltSilty sand & sandy silt Silty sand & sandy siltSilty sand & sandy siltSand & silty sand Silty sand & sandy silt Clay & silty clay ClayClay & silty clayClay & silty clay Silty sand & sandy siltSilty sand & sandy silt Silty sand & sandy silt Clay & silty clay Silty sand & sandy silt CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:13 AM 1 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 100.07 ft, Date: 3/14/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: SCPT-1 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grainedWATER TABLE FOR ESTIMATING PURPOSES ONLY Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio Pore pressure u HAND AUGER Pressure (psi) 4003002001000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Pore pressure u Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type ClaySilty sand & sandy silt Clay Clay & silty claySilty sand & sandy silt Sand & silty sand Silty sand & sandy silt Sand & silty sand Silty sand & sandy silt Very dense/stiff soil Silty sand & sandy siltSand & silty sand Silty sand & sandy siltSand & silty sandSilty sand & sandy siltSilty sand & sandy silt Silty sand & sandy siltSilty sand & sandy siltSand & silty sand Silty sand & sandy silt Clay & silty clay ClayClay & silty clayClay & silty clay Silty sand & sandy siltSilty sand & sandy silt Silty sand & sandy silt Clay & silty clay Silty sand & sandy silt CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:13 AM 2 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 100.07 ft, Date: 3/14/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: SCPT-1 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grained Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio Shear Wave velocity HAND AUGER Vs (ft/s) 2000150010005000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Custom Data Shear Wave velocity Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type ClaySilty sand & sandy silt Clay Clay & silty claySilty sand & sandy silt Sand & silty sand Silty sand & sandy silt Sand & silty sand Silty sand & sandy silt Very dense/stiff soil Silty sand & sandy siltSand & silty sand Silty sand & sandy siltSand & silty sandSilty sand & sandy siltSilty sand & sandy silt Silty sand & sandy siltSilty sand & sandy siltSand & silty sand Silty sand & sandy silt Clay & silty clay ClayClay & silty clayClay & silty clay Silty sand & sandy siltSilty sand & sandy silt Silty sand & sandy silt Clay & silty clay Silty sand & sandy silt CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 11:08:19 AM 1 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 100.07 ft, Date: 3/15/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: CPT-2 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grained Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio SPT N60 HAND AUGER N60 (blows/ft) 100806040200Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 SPT N60 Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Clay & silty clayClay & silty clay Clay Clay & silty claySilty sand & sandy silt Clay & silty claySand & silty sand Clay & silty clay Sand & silty sand Silty sand & sandy silt Sand & silty sandVery dense/stiff soil Sand & silty sand Sand & silty sandSilty sand & sandy siltSand & silty sandSand & silty sandSilty sand & sandy siltSilty sand & sandy siltSilty sand & sandy siltSand & silty sandVery dense/stiff soil Clay & silty clay Clay Clay & silty clayClay & silty clay Clay & silty claySand & silty sandSilty sand & sandy siltClay & silty clay Sand & silty sandVery dense/stiff soil CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:13 AM 3 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 100.07 ft, Date: 3/15/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: CPT-2 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grainedWATER TABLE FOR ESTIMATING PURPOSES ONLY Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio Pore pressure u HAND AUGER Pressure (psi) 4003002001000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Pore pressure u Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Clay & silty clayClay & silty clay Clay Clay & silty claySilty sand & sandy silt Clay & silty claySand & silty sand Clay & silty clay Sand & silty sand Silty sand & sandy silt Sand & silty sandVery dense/stiff soil Sand & silty sand Sand & silty sandSilty sand & sandy siltSand & silty sandSand & silty sandSilty sand & sandy siltSilty sand & sandy siltSilty sand & sandy siltSand & silty sandVery dense/stiff soil Clay & silty clay Clay Clay & silty clayClay & silty clay Clay & silty claySand & silty sandSilty sand & sandy siltClay & silty clay Sand & silty sandVery dense/stiff soil CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:13 AM 4 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 83.01 ft, Date: 3/15/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: CPT-3 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grained Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio SPT N60 HAND AUGER N60 (blows/ft) 100806040200Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 SPT N60 Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Silty sand & sandy silt ClayClay & silty claySilty sand & sandy silt Clay Clay & silty clay Silty sand & sandy siltClay & silty clay Clay & silty claySilty sand & sandy silt Sand & silty sandSilty sand & sandy siltVery dense/stiff soil Silty sand & sandy siltClaySilty sand & sandy silt Silty sand & sandy siltSand & silty sandVery dense/stiff soilSilty sand & sandy silt Sand & silty sand Silty sand & sandy siltSilty sand & sandy siltSilty sand & sandy silt Clay & silty clay Clay Sand & silty sand CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:14 AM 5 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 83.01 ft, Date: 3/15/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: CPT-3 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grainedWATER TABLE FOR ESTIMATING PURPOSES ONLY Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio Pore pressure u HAND AUGER Pressure (psi) 4003002001000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Pore pressure u Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Silty sand & sandy silt ClayClay & silty claySilty sand & sandy silt Clay Clay & silty clay Silty sand & sandy siltClay & silty clay Clay & silty claySilty sand & sandy silt Sand & silty sandSilty sand & sandy siltVery dense/stiff soil Silty sand & sandy siltClaySilty sand & sandy silt Silty sand & sandy siltSand & silty sandVery dense/stiff soilSilty sand & sandy silt Sand & silty sand Silty sand & sandy siltSilty sand & sandy siltSilty sand & sandy silt Clay & silty clay Clay Sand & silty sand CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:14 AM 6 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 97.60 ft, Date: 3/15/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: CPT-4 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grained Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio SPT N60 HAND AUGER N60 (blows/ft) 100806040200Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 SPT N60 Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Silty sand & sandy silt Clay & silty clay Clay Clay & silty claySand & silty sand Sand & silty sand Silty sand & sandy silt Sand & silty sand Silty sand & sandy silt Very dense/stiff soil Silty sand & sandy silt Silty sand & sandy siltSand & silty sandVery dense/stiff soil Silty sand & sandy siltVery dense/stiff soilSand & silty sand Silty sand & sandy silt Clay & silty clay ClaySilty sand & sandy silt Very dense/stiff soilClay & silty clay Clay & silty clayVery dense/stiff soil CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:14 AM 7 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 97.60 ft, Date: 3/15/2022101 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: CPT-4 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grainedWATER TABLE FOR ESTIMATING PURPOSES ONLY Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio Pore pressure u HAND AUGER Pressure (psi) 4003002001000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Pore pressure u Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Silty sand & sandy silt Clay & silty clay Clay Clay & silty claySand & silty sand Sand & silty sand Silty sand & sandy silt Sand & silty sand Silty sand & sandy silt Very dense/stiff soil Silty sand & sandy silt Silty sand & sandy siltSand & silty sandVery dense/stiff soil Silty sand & sandy siltVery dense/stiff soilSand & silty sand Silty sand & sandy silt Clay & silty clay ClaySilty sand & sandy silt Very dense/stiff soilClay & silty clay Clay & silty clayVery dense/stiff soil CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:49:14 AM 8 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 99.41 ft, Date: 3/14/2022131 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: SCPT-2 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grained Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio SPT N60 HAND AUGER N60 (blows/ft) 100806040200Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 SPT N60 Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Clay Clay & silty clay Clay & silty clay Silty sand & sandy silt Clay & silty clay Clay & silty clay Sand & silty sand Silty sand & sandy siltSilty sand & sandy siltSilty sand & sandy siltSilty sand & sandy silt Sand & silty sandSilty sand & sandy siltSand & silty sand Sand & silty sand Silty sand & sandy siltSand & silty sandClay & silty clay Clay & silty clay Clay & silty clay ClaySand & silty sand Clay & silty clayClay & silty clayVery dense/stiff soilSilty sand & sandy silt Silty sand & sandy silt Sand & silty sand Silty sand & sandy siltVery dense/stiff soil CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:48:42 AM 1 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 99.41 ft, Date: 3/14/2022131 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: SCPT-2 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grainedWATER TABLE FOR ESTIMATING PURPOSES ONLY Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio Pore pressure u HAND AUGER Pressure (psi) 4003002001000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Pore pressure u Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Clay Clay & silty clay Clay & silty clay Silty sand & sandy silt Clay & silty clay Clay & silty clay Sand & silty sand Silty sand & sandy siltSilty sand & sandy siltSilty sand & sandy siltSilty sand & sandy silt Sand & silty sandSilty sand & sandy siltSand & silty sand Sand & silty sand Silty sand & sandy siltSand & silty sandClay & silty clay Clay & silty clay Clay & silty clay ClaySand & silty sand Clay & silty clayClay & silty clayVery dense/stiff soilSilty sand & sandy silt Silty sand & sandy silt Sand & silty sand Silty sand & sandy siltVery dense/stiff soil CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 10:48:42 AM 2 CLIENT: HALEY & ALDRICH GREGG DRILLING, LLC WWW.GREGGDRILLING.COM Total depth: 99.41 ft, Date: 3/14/2022131 TERMINAL CT, SOUTH SAN FRANCISCO, CA CPT: SCPT-2 SITE: FIELD REP: RATI Cone ID: GDC-89 SBTn legend 1. Sensitive fine grained 2. Organic material 3. Clay to silty clay 4. Clayey silt to silty clay 5. Silty sand to sandy silt 6. Clean sand to silty sand 7. Gravely sand to sand 8. Very stiff sand to clayey sand 9. Very stiff fine grained Cone resistance qt HAND AUGER Tip resistance (tsf) 6004002000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Cone resistance qt Sleeve friction HAND AUGER Friction (tsf) 14121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Sleeve friction Friction ratio HAND AUGER Rf (%) 1086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Friction ratio Shear Wave velocity HAND AUGER Vs (ft/s) 2000150010005000Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Custom Data Shear Wave velocity Soil Behaviour Type HAND AUGER SBT (Robertson, 2010) 181614121086420Depth (ft)110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Soil Behaviour Type Clay Clay & silty clay Clay & silty clay Silty sand & sandy silt Clay & silty clay Clay & silty clay Sand & silty sand Silty sand & sandy siltSilty sand & sandy siltSilty sand & sandy siltSilty sand & sandy silt Sand & silty sandSilty sand & sandy siltSand & silty sand Sand & silty sand Silty sand & sandy siltSand & silty sandClay & silty clay Clay & silty clay Clay & silty clay ClaySand & silty sand Clay & silty clayClay & silty clayVery dense/stiff soilSilty sand & sandy silt Silty sand & sandy silt Sand & silty sand Silty sand & sandy siltVery dense/stiff soil CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/16/2022, 11:09:03 AM 1 Geophone Offset:0.66 Feet Source Offset:1.67 Feet 03/14/22 Test Depth (Feet) Geophone Depth (Feet) Waveform Ray Path (Feet) Incremental Distance (Feet) Characteristic Arrival Time (ms) Incremental Time Interval (ms) Interval Velocity (Ft/Sec) Interval Depth (Feet) 5.09 4.43 4.73 4.73 7.5500 10.01 9.35 9.49 4.76 12.4000 4.8500 982.4 6.89 15.42 14.76 14.85 5.36 31.3500 18.9500 282.8 12.05 20.01 19.35 19.42 4.57 44.9500 13.6000 336.1 17.06 25.10 24.44 24.50 5.07 52.2000 7.2500 699.4 21.90 30.02 29.36 29.41 4.91 58.4000 6.2000 792.2 26.90 35.10 34.44 34.49 5.08 65.4000 7.0000 725.5 31.90 40.03 39.37 39.40 4.92 70.8500 5.4500 902.1 36.91 45.11 44.45 44.48 5.08 76.3500 5.5000 923.9 41.91 50.03 49.37 49.40 4.92 81.8500 5.5000 894.2 46.91 55.12 54.46 54.48 5.08 89.0500 7.2000 705.9 51.92 60.04 59.38 59.40 4.92 95.0500 6.0000 819.9 56.92 65.12 64.46 64.49 5.08 101.4000 6.3500 800.5 61.92 70.05 69.39 69.41 4.92 107.6500 6.2500 787.2 66.93 75.13 74.47 74.49 5.08 114.0000 6.3500 800.6 71.93 80.05 79.39 79.41 4.92 120.6000 6.6000 745.5 76.93 85.14 84.48 84.49 5.08 125.6000 5.0000 1016.8 81.93 90.06 89.40 89.41 4.92 130.3000 4.7000 1046.9 86.94 95.14 94.48 94.50 5.08 136.0500 5.7500 884.3 91.94 100.07 99.41 99.42 4.92 140.8000 4.7500 1035.9 96.94 SCPT-1 Shear Wave Velocity Calculations 101 Terminal Ct SCPT-1 0 20 40 60 80 100 120 .0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 Depth (Feet)Time (ms) Waveforms for Sounding SCPT-1 Geophone Offset:0.66 Feet Source Offset:1.67 Feet 03/14/22 Test Depth (Feet) Geophone Depth (Feet) Waveform Ray Path (Feet) Incremental Distance (Feet) Characteristic Arrival Time (ms) Incremental Time Interval (ms) Interval Velocity (Ft/Sec) Interval Depth (Feet) 5.09 4.43 4.73 4.73 7.5500 10.01 9.35 9.49 4.76 22.0000 14.4500 329.7 6.89 15.09 14.43 14.53 5.03 41.2000 19.2000 262.2 11.89 20.01 19.35 19.42 4.90 54.1500 12.9500 378.1 16.89 25.10 24.44 24.50 5.07 60.9000 6.7500 751.2 21.90 30.02 29.36 29.41 4.91 69.1500 8.2500 595.4 26.90 35.10 34.44 34.49 5.08 75.6000 6.4500 787.3 31.90 40.03 39.37 39.40 4.92 81.6000 6.0000 819.4 36.91 45.11 44.45 44.48 5.08 88.5500 6.9500 731.1 41.91 50.03 49.37 49.40 4.92 93.0500 4.5000 1092.9 46.91 55.12 54.46 54.48 5.08 98.3000 5.2500 968.1 51.92 60.04 59.38 59.40 4.92 104.2500 5.9500 826.7 56.92 65.12 64.46 64.49 5.08 110.5000 6.2500 813.3 61.92 70.05 69.39 69.41 4.92 116.5000 6.0000 820.0 66.93 75.13 74.47 74.49 5.08 122.7000 6.2000 820.0 71.93 80.05 79.39 79.41 4.92 127.9500 5.2500 937.2 76.93 85.14 84.48 84.49 5.08 132.4500 4.5000 1129.8 81.93 90.06 89.40 89.41 4.92 137.9000 5.4500 902.8 86.94 95.14 94.48 94.50 5.08 142.1500 4.2500 1196.3 91.94 99.41 98.75 98.76 4.26 146.4000 4.2500 1003.4 96.62 SCPT-2 Shear Wave Velocity Calculations 131 Terminal Ct SCPT-2 0 20 40 60 80 100 120 .0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 Depth (Feet)Time (ms) Waveforms for Sounding SCPT-2 Sounding: Depth (ft): Site: Engineer: GREGG DRILLING & TESTING Pore Pressure Dissipation Test SCPT-1 23.62 101 Terminal Ct Rati 0 2 4 6 8 10 12 14 0 200 400 600 800 1000 1200PSI Time (seconds) Sounding: Depth (ft): Site: Engineer: GREGG DRILLING & TESTING Pore Pressure Dissipation Test CPT-2 24.93 101 Terminal Ct Rati -6 -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300PSI Time (seconds) Sounding: Depth (ft): Site: Engineer: GREGG DRILLING & TESTING Pore Pressure Dissipation Test CPT-3 21.33 101 Terminal Ct Rati 0 5 10 15 20 25 0 200 400 600 800 1000 1200 1400PSITime (seconds) Sounding: Depth (ft): Site: Engineer: GREGG DRILLING & TESTING Pore Pressure Dissipation Test CPT-4 23.29 101 Terminal Ct Rati 0 1 2 3 4 5 6 7 8 9 10 0 200 400 600 800 1000 1200PSI Time (seconds) Sounding: Depth (ft): Site: Engineer: GREGG DRILLING & TESTING Pore Pressure Dissipation Test SCPT-2 18.54 131 Terminal Ct Rati 0 1 2 3 4 5 6 7 8 9 10 0 100 200 300 400 500 600PSI Time (seconds)     APPENDIX C Previous Hand-Auger Boring Logs and Cone Penetration Test Results CLASSIFICATION CHART Major Divisions Symbols Typical Names GW GP GM GC SW SP SM SC ML CL OL MH CH OH PTHighly Organic Soils UNIFIED SOIL CLASSIFICATION SYSTEM Well-graded gravels or gravel-sand mixtures, little or no fines Poorly-graded gravels or gravel-sand mixtures, little or no fines Silty gravels, gravel-sand-silt mixtures Clayey gravels, gravel-sand-clay mixtures Well-graded sands or gravelly sands, little or no fines Poorly-graded sands or gravelly sands, little or no fines Silty sands, sand-silt mixtures Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays Organic silts and organic silt-clays of low plasticity Inorganic silts of high plasticity Inorganic clays of high plasticity, fat clays Organic silts and clays of high plasticity Peat and other highly organic soils Clayey sands, sand-clay mixtures Range of Grain Sizes Grain Size in Millimeters U.S. Standard Sieve Size Above 12" 12" to 3" Classification Boulders Cobbles Above 305 305 to 76.2 Silt and Clay Below No. 200 Below 0.075 GRAIN SIZE CHART SAMPLER TYPECoarse-Grained Soils(more than half of soil > no. 200sieve size)Fine -Grained Soils(more than half of soil< no. 200 sieve size)Gravels (More than half of coarse fraction > no. 4 sieve size) Sands (More than half of coarse fraction < no. 4 sieve size) Silts and Clays LL = < 50 Silts and Clays LL = > 50 Gravel coarse fine 3" to No. 4 3" to 3/4" 3/4" to No. 4 No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200 76.2 to 4.76 76.2 to 19.1 19.1 to 4.76 4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.420 to 0.075 Sand coarse medium fine C Core barrel CA California split-barrel sampler with 2.5-inch outside diameter and a 1.93-inch inside diameter D&M Dames & Moore piston sampler using 2.5-inch outside diameter, thin-walled tube O Osterberg piston sampler using 3.0-inch outside diameter, thin-walled Shelby tube PT Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube MC Modified California sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter SPT Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and a 1.5-inch inside diameter ST Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure SAMPLE DESIGNATIONS/SYMBOLS Sample taken with California or Modified California split-barrel sampler. Darkened area indicates soil recovered Classification sample taken with Standard Penetration Test sampler Undisturbed sample taken with thin-walled tube Disturbed sample Sampling attempted with no recovery Core sample Analytical laboratory sample Sample taken with Direct Push sampler Sonic Unstabilized groundwater level Stabilized groundwater level ROCKRIDGE GEOTECHNICAL Project No.Figure A-7Date01/05/21 20-1954 101 TERMINAL COURT South San Francisco, CaliforniaDRAFT SamplerTypeSampleBlows/ 6"SPTN-Value1LITHOLOGYDEPTH(feet)Dry DensityLbs/Cu FtType ofStrengthTestShear StrengthLbs/Sq FtFines%ConfiningPressureLbs/Sq FtNaturalMoistureContent, %See Site Plan, Figure 2 12/10/2019 Hand-Auger Logged by: Hammer type: N/A Grab Date finished: 12/10/2019 Hammer weight/drop: N/A Sampler: Boring location: Date started: Drilling method: 1 2 3 4 5 6 7 8 9 10 MATERIAL DESCRIPTION LABORATORY TEST DATA SAMPLES PROJECT: PAGE 1 OF 1 Log of Boring HA-1 A. Bourret 101 TERMINAL COURT South San Francisco, California GRAB Figure:Project No.: ROCKRIDGE GEOTECHNICAL Boring terminated at a depth of 5 feet below ground surface.Boring backfilled with soil cuttings.Groundwater not encountered during hand-augering. A-520-1954 SP 5 inches asphalt concrete GRAB CLAYEY SAND with GRAVEL (SC) dark gray, moist, strong hydrocarbon odor SANDY CLAY (CL)olive-brown, moist, trace gravel CL GRAB CLAYEY SAND (CL)olive-brown, moistCL FILLDRAFT SamplerTypeSampleBlows/ 6"SPTN-Value1LITHOLOGYDEPTH(feet)Dry DensityLbs/Cu FtType ofStrengthTestShear StrengthLbs/Sq FtFines%ConfiningPressureLbs/Sq FtNaturalMoistureContent, %See Site Plan, Figure 2 12/10/2019 Hand-Auger Logged by: Hammer type: N/A Grab Date finished: 12/10/2019 Hammer weight/drop: N/A Sampler: Boring location: Date started: Drilling method: 1 2 3 4 5 6 7 8 9 10 MATERIAL DESCRIPTION LABORATORY TEST DATA SAMPLES PROJECT: PAGE 1 OF 1 Log of Boring HA-3 A. Bourret 101 TERMINAL COURT South San Francisco, California GRAB Figure:Project No.: ROCKRIDGE GEOTECHNICAL Boring terminated at a depth of 4.5 feet below ground surface.Boring backfilled with soil cuttings.Groundwater not encountered during hand-augering. A-620-1954 SM GRAB SC CLAYEY SAND with GRAVEL (SC)dark gray, wet 5 inches asphalt concrete SILTY SAND (SM)olive-gray, moist FILLDRAFT A-1CPT-1Total depth: 93.8 ft, Date: December 10, 2020Depth to Groundwater: estimated at 7 feet with a Pore Pressure Dissipation Test at 39.9 feet.Cone Operator: Middle Earth Geo Testing, Inc.Project No.FigureDateSBT legend1. Sensitive fine grained2. Organic material3. Clay to silty clay4. Clayey silt to silty clay5. Silty sand to sandy silt6. Clean sand to silty sand7. Gravely sand to sand8. Very stiff sand to clayey sand9. Very stiff fine grained01/05/2120-1954101 TERMINAL COURTSouth San Francisco, CaliforniaCONE PENETRATION TEST RESULTSROCKRIDGEGEOTECHNICALDRAFT CPT-2A-2Total depth: 85.1 ft, Date: December 10, 2020Depth to Groundwater: estimated at 10.4 feet with a Pore Pressure Dissipation Test at 52.5 feet.Cone Operator: Middle Earth Geo Testing, Inc.Project No.FigureDateSBT legend1. Sensitive fine grained2. Organic material3. Clay to silty clay4. Clayey silt to silty clay5. Silty sand to sandy silt6. Clean sand to silty sand7. Gravely sand to sand8. Very stiff sand to clayey sand9. Very stiff fine grained01/05/2120-1954101 TERMINAL COURTSouth San Francisco, CaliforniaCONE PENETRATION TEST RESULTSROCKRIDGEGEOTECHNICALDRAFT CPT-3A-3Total depth: 89.4 ft, Date: December 10, 2020Depth to Groundwater: estimated at 12.6 feet with a Pore Pressure Dissipation Test at 52.8 feet.Cone Operator: Middle Earth Geo Testing, Inc.Project No.FigureDateSBT legend1. Sensitive fine grained2. Organic material3. Clay to silty clay4. Clayey silt to silty clay5. Silty sand to sandy silt6. Clean sand to silty sand7. Gravely sand to sand8. Very stiff sand to clayey sand9. Very stiff fine grained01/05/2120-1954101 TERMINAL COURTSouth San Francisco, CaliforniaCONE PENETRATION TEST RESULTSROCKRIDGEGEOTECHNICALDRAFT CPT-4A-4Total depth: 87.4 ft, Date: December 10, 2020Groundwater 8 feet (tape drop)Cone Operator: Middle Earth Geo Testing, Inc.Project No.FigureDateSBT legend1. Sensitive fine grained2. Organic material3. Clay to silty clay4. Clayey silt to silty clay5. Silty sand to sandy silt6. Clean sand to silty sand7. Gravely sand to sand8. Very stiff sand to clayey sand9. Very stiff fine grained01/05/2120-1954101 TERMINAL COURTSouth San Francisco, CaliforniaCONE PENETRATION TEST RESULTSROCKRIDGEGEOTECHNICALDRAFT     APPENDIX D Laboratory Testing Results CTL Job No: Project No.0204962 By:RU Client: Date:03/30/22 Project Name:Remarks: Boring:HA-1 HA-2 HA-3 HA-4 HA-4 Sample:20 10.25 CAL-3 CAL-2 CAL-4 Depth, ft:20 10.25 40 15 76.0 Visual Description: Actual Gs Assumed Gs Moisture, %86.2 104.2 17.7 101.4 24.0 Wet Unit wt, pcf Dry Unit wt, pcf Dry Bulk Dens.ρb, (g/cc) Saturation, % Total Porosity, % Volumetric Water Cont,Өw,% Volumetric Air Cont., Өa,% Void Ratio Series 1 2 3 4 5 6 7 8 Haley & Aldrich 715-046 101 & 131 Terminal Ct Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate. Dark Gray CLAY Dark Gary CLAY w/ organics Bluish Gray Clayey SAND Gray CLAY Gray Sandy CLAY 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0Density, pcfMoisture Content, % Moisture-Density Series 1 Series 2 Series 3 Series 4 Series 5 Series 6 Series 7 Series 8 Zero Air-voids Curves, Specific Gravity 2.6 2.7 2.8 The Zero Air-Voids curves represent the dry density at 100% saturation for each value of specific gravity Moisture-Density-Porosity Report Cooper Testing Labs, Inc. (ASTM D7263b) Olive Brown Sandy Lean CLAY 30 20 10 Olive Gray Lean Clayey SAND 27 15 12 Greenish Gray Fat CLAY (Bay Mud)89 37 52 Dark Gray Fat CLAY 65 25 40 715-046 Haley & Aldrich MATERIAL DESCRIPTION LL PL PI %<#40 %<#200 USCS Project No.Client:Remarks: Project: COOPER TESTING LABORATORY Figure Source of Sample: HA-3 Depth: 14'Sample Number: HA3-TW1 Source of Sample: HA-3 Depth: 45'Sample Number: HA3-45 Source of Sample: HA-5 Depth: 9.5'Sample Number: HA5-TW9.5 Source of Sample: HA-5 Depth: 77'Sample Number: HA5-TW77PLASTICITY INDEX0 10 20 30 40 50 60 LIQUID LIMIT0102030405060 70 80 90 100 110 CL-ML CL or O L CH or O H ML or OL MH or OH Dashed line indicates the approximate upper limit boundary for natural soils 47 WATER CONTENT15 25 35 45 55 65 75 85 95 105 115 NUMBER OF BLOWS5678910 20 25 30 40 LIQUID AND PLASTIC LIMITS TEST REPORT (ASTM D4318) 101 & 131 Terminal Ct - 0204962 Job No.: Project No.: Run By:MD Client: Date: Checked By:DC Project: Boring: HA-1 HA-1 HA-2 HA-2 HA-3 HA-3 HA-3 HA-4 Sample: HA1-30 HA1-40 HA2-30 HA2-40 HA3-30 HA3-45 HA3-90 HA4-45 Depth, ft.: 30 40 30 40 30 45 90 45 Soil Type: Wt of Dish & Dry Soil, gm 533.2 353.2 352.8 437.5 350.0 300.3 319.0 212.7 Weight of Dish, gm 172.3 172.0 173.9 175.3 176.3 173.6 173.0 175.3 Weight of Dry Soil, gm 361.0 181.2 178.9 262.3 173.7 126.8 145.9 37.4 Wt. Ret. on #4 Sieve, gm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Wt. Ret. on #200 Sieve, gm 183.4 132.5 140.1 204.3 105.2 79.8 59.5 14.2 % Gravel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 % Sand 50.8 73.1 78.3 77.9 60.6 63.0 40.8 37.9 % Silt & Clay 49.2 26.9 21.7 22.1 39.4 37.0 59.2 62.1 Bluish Gray Sandy CLAY Dark Gray Sandy CLAY Bluish Gray Clayey SAND Light Brown Silty SAND Brown Silty SAND Olive Brown Clayey SAND Olive Brown Clayey SAND Olive Gray Lean Clayey SAND 0204962 4/8/2022 101 & 131 Terminal Ct 715-046a Haley & Aldrich Remarks: As an added benefit to our clients, the gravel fraction may be included in this report. Whether or not it is included is dependent upon both the technician's time available and if there is a significant enough amount of gravel. The gravel is always included in the percent retained on the #200 sieve but may not be weighed separately to determine the percentage, especially if there is only a trace amount, (5% or less). #200 Sieve Wash Analysis ASTM D 1140 Job No.: Project No.: Run By:MD Client: Date: Checked By:DC Project: Boring: HA-5 Sample: HA5-35 Depth, ft.: 35 Soil Type: Wt of Dish & Dry Soil, gm 370.7 Weight of Dish, gm 174.6 Weight of Dry Soil, gm 196.1 Wt. Ret. on #4 Sieve, gm 0.0 Wt. Ret. on #200 Sieve, gm 139.7 % Gravel 0.0 % Sand 71.3 % Silt & Clay 28.7 0204962 4/8/2022 101 & 131 Terminal Ct 715-046b Haley & Aldrich Olive Yellowish Brown Silty SAND Remarks: As an added benefit to our clients, the gravel fraction may be included in this report. Whether or not it is included is dependent upon both the technician's time available and if there is a significant enough amount of gravel. The gravel is always included in the percent retained on the #200 sieve but may not be weighed separately to determine the percentage, especially if there is only a trace amount, (5% or less). #200 Sieve Wash Analysis ASTM D 1140 Cooper Testing Labs, Inc. 937 Commercial Street Palo Alto, CA 94303 1 2 3 4 Moisture %55.3 21.3 91.5 42.4 Dry Den,pcf 68.6 106.5 48.1 79.5 Void Ratio 1.548 0.642 2.632 1.199 Saturation %100.0 92.8 97.3 99.0 Height in 5.96 5.97 5.99 5.97 Diameter in 2.88 2.85 2.85 2.87 Cell psi 32.6 8.8 6.6 34.7 Strain %15.00 11.07 4.83 4.25 Deviator, ksf 4.626 5.500 0.638 3.480 Rate %/min 1.00 1.00 1.00 1.00 in/min 0.060 0.060 0.060 0.060 Job No.: Client: Project: Boring:HA-2-TW2-70 HA-3-TW-1-14 HA-5 HA-5 Sample:HA5-TW-9.5 HA5-TW-77 Depth ft:70-72.5 14-16.5(Tip-4.5")9.5(Tip-4")77 Sample # 1 2 3 4 Greenish Gray Fat CLAY (Bay Mud) Dark Gray Fat CLAY Note: Strengths are picked at the peak deviator stress or 15% strain which ever occurs first per ASTM D2850. Remarks: Sample Data Visual Soil Description Gray CLAY w/ Sand Olive Brown Sandy Lean CLAY 715-046 Haley & Aldrich, Inc 0204962-000-003-01 0.0 3.0 6.0 0.0 3.0 6.0 9.0 12.0Shear Stress, ksfTotal Normal Stress, ksf 0.00 1.00 2.00 3.00 4.00 5.00 6.00 0.0 6.0 12.0 18.0 24.0Deviator Stress, ksfStrain, % Stress-Strain Curves Sample 1 Sample 2 Sample 3 Sample 4 Unconsolidated-Undrained Triaxial Test ASTM D2850 HA2-TW2-70 HA3-TW1-14 HA-2 HA-3 Job No.: Boring: Run By:MD Client: Sample:Reduced:PJ Project: Depth, ft.: Checked:PJ/DC Soil Type: Date:4/8/2022 Assumed Gs 2.75 Initial Final 23.9 20.9 100.5 108.9 0.709 0.576 92.8 100.0 Void Ratio: % Saturation: Dry Density, pcf: Moisture %: HA-3TW1-14 14-16.5(Tip-3")0204962 Haley & Aldrich 715-046 Olive Brown Sandy Lean CLAY 0.0 5.0 10.0 15.0 20.0 25.0 30.0 10 100 1000 10000 100000Strain, % Effective Stress, psf Strain-Log-P Curve Consolidation Test ASTM D2435 Remarks: Job No.: Boring: Run By:MD Client: Sample:Reduced:PJ Project: Depth, ft.: Checked:PJ/DC Soil Type: Date:4/6/2022 Assumed Gs 2.6 Initial Final 94.7 74.6 46.2 55.2 2.510 1.941 98.1 100.0 Void Ratio: % Saturation: Dry Density, pcf: Moisture %: HA-4-TW2-35 35-37.5(Tip-3")0204962 Haley & Aldrich 715-046 Greenish Gray CLAY (Bay Mud) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 10 100 1000 10000 100000Strain, % Effective Stress, psf Strain-Log-P Curve Consolidation Test ASTM D2435 Remarks: Job No.: Boring: Run By:MD Client: Sample:Reduced:PJ Project: Depth, ft.: Checked:PJ/DC Soil Type: Date:4/6/2022 Assumed Gs 2.6 Initial Final 96.4 67.9 45.9 58.7 2.537 1.767 98.8 100.0 Void Ratio: % Saturation: Dry Density, pcf: Moisture %: HA-5-TW2-9.5 9.5-12(Tip-3")0204962 Haley & Aldrich 715-046 Greenish Gray Fat CLAY (Bay Mud) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 10 100 1000 10000 100000Strain, % Effective Stress, psf Strain-Log-P Curve Consolidation Test ASTM D2435 Remarks: Boring: HA-2 Reduced By:RU Sample: R6+R7 Checked By:PJ Depth: 0-5 Date:3/31/2022 A B C D E 50 110 200 87 207 482 1093 2601 6057 2.60 2.47 2.49 0 0 0 140 130 100 3.41 3.77 3.26 9 13 32 10 13 32 15.8 14.0 12.1 133.4 138.4 141.7 115.2 121.5 126.4 Specimen Designation Corrected R-Value Moisture Content (%) Wet Density (pcf) Dry Density (pcf) Exudation Load (lbf) Height After Compaction (in) Stabilometer @ 2000 Turns Displacement R-value Exudation Pressure (psi) Expansion Pressure (psf) Compactor Foot Pressure (psi) R-Value CTM 301 CTL Job No.: Client: Project Number: 715-046 Haley & Aldrich 0204962 18 0 Soil Description: Remarks: Project Name: 101+131 Terminal Ct Brown Clayey SAND R-Value Expansion Pressure 0 100 200 300 400 500 600 700 800 900 1000 0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 Exudation Pressure vs R-Value Exudation Pressure vs. Expansion Pressure